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Abstract

Global phenomena, such as climate change, often have local impacts that are spatially cor-

related. We show that greater spatial correlation of productivities can increase international

inequality by increasing the correlation between a country’s productivity and its gains from

trade. We confirm this prediction using a half-century of exogenous variation in the spatial cor-

relation of agricultural productivities induced by a global climatic phenomenon. We introduce

this general-equilibrium effect into projections of climate-change impacts that typically omit

spatial linkages and therefore do not account for the global scope of climate change. We project

greater international inequality, with higher welfare losses across Africa.
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1 Introduction

Global phenomena often have heterogeneous local impacts. In many cases, these impacts are spa-

tially correlated: neighboring locations experience similar conditions, a pattern dubbed the “first

law of geography” (Tobler, 1970). The effects of anthropogenic climate change on cereal yields,

depicted in Figure 1, offer a prime example. Projected productivity losses are concentrated near

the equator, while economies that will experience smaller losses and even some gains tend to be in

mid-latitude locations. That is, a key feature of global climate change is that an economy suffering

reduced productivity will tend to have neighboring economies experiencing similar declines.1 Em-

pirical studies that estimate climate change impacts using isolated variation in local temperatures

have largely neglected the consequences of such spatial correlation and, thus, the global nature of

climate change.

Figure 1: Change in log cereal yields under climate change (2013-2099)

Notes: Map shows the projected change in country-level log cereal yields under climate change between 2013–2099.
See details in Section 5.1.

This paper shows that greater spatial correlation of productivities alters patterns of inter-

national trade in a way that could increase international inequality. Theoretically, the spatial

structure of productivity shapes countries’ gains from trade because they trade more with their

neighbors than distant countries. Our empirical investigation leverages exogenous variation in the

spatial correlation of agricultural productivities induced by a naturally-occurring global climatic

phenomenon over the last half-century. We find that patterns of trade respond to spatial correla-

tion in a manner consistent with increased international inequality. When we amend projections of

anthropogenic-climate-change impacts based on quasi-experimental estimates to incorporate this

general-equilibrium effect, projected international inequality rises.

Trade theory links the spatial correlation of productivities and international inequality, as we

explain in Section 2. A country benefits by trading with more productive counterparts to the extent

1Other examples of global events with spatially correlated local consequences include the Great Recession (Pisko-
rski and Seru, 2021), food price shocks (McGuirk and Burke, 2020), and pandemics (Barro, Ursua and Weng, 2020;
Dong, Du and Gardner, 2020).
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that they demand more of its exports and sell it cheaper imports. Since trade costs increase with

geographic distance, a country enjoys larger gains from trade when its neighbors, rather than its

distant trading partners, are more productive. We show that when productivities are more spatially

correlated, more productive countries gain more from trade because they are near other productive

countries, while less productive countries gain less from trade because they are far from productive

trading partners. All else equal, greater spatial correlation raises welfare inequality.

Estimating how spatial correlation mediates trade responses to productivity shocks is a challenge

for incumbent empirical approaches. Quasi-experimental research designs typically estimate local

direct effects but neglect or aim to difference out indirect effects transmitted by spatial linkages.

General-equilibrium trade models necessarily incorporate these indirect effects, but the assumed

indirect effects are typically consequences of convenient functional forms rather than explicitly an-

alyzed. For example, in models with constant-elasticity-of-substitution (CES) gravity equations,

the price elasticity of import demand and all cross-price elasticities are governed by the same

parameter. Estimating the price elasticity of demand is only informative about patterns of substi-

tution across countries because of the assumed import demand system. Indirect effects such as the

spatial-correlation mechanism are therefore untested implications of the chosen functional form.

Our main contribution is to estimate the empirical relationship between the spatial correlation

of productivities and the distribution of gains from trade. Estimating causal effects of common

shocks is generally challenging because there are few or no unaffected units (Donaldson, 2015;

Fuchs-Schündeln and Hassan, 2016; Nakamura and Steinsson, 2018; Ramey, 2019). In our setting,

the treatment of interest affects the entire global trading network. Thus, comparisons must be

made across time using exogenous variation from a global common shock. That is, one needs a

natural experiment at a global scale.

To that end, our empirical investigation exploits a naturally-occurring climatic phenomenon

known as the El Niño-Southern Oscillation (ENSO), described in Section 3. In years when ENSO

is strong, there is a large, spatially contiguous region across the tropics that experience hotter

conditions, shown in red in Figure 2. ENSO approximates the ideal experiment by increasing the

global spatial correlation of cereal productivities without altering their mean or variance.

In Section 4, we examine the effect of this global natural experiment on the distribution of the

gains from trade in cereals. In an important class of trade models, a country’s gains from trade are

revealed by the share of its expenditure devoted to imports (Arkolakis, Costinot and Rodŕıguez-

Clare, 2012). We estimate how local temperature-driven and global ENSO-driven variation in cereal

productivities affect these expenditure shares. When productivities are more spatially correlated,

more productive countries import more. In the model, greater spatial correlation of productivities

causes more productive countries to gain relatively more from trade and less productive countries

to gain less. Specifically, increasing the cross-sectional spatial correlation of cereal productivities

by one standard deviation increases the inequality of welfare attributable to cereal consumption by

2%.

We take several steps to validate this interpretation of the difference in trade patterns. In par-
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Figure 2: ENSO and the global spatial structure of temperature

Notes: This map depicts pixel-level correlations between ENSO in December and average temperature during the
following February for 1961–2013. Red areas are hotter with warmer ENSO conditions. Blue areas are cooler with
warmer ENSO conditions.

ticular, our quantification relies on a class of trade models in which there is no spatial correlation

in the pattern of comparative advantage within the cereals sector. By contrast, if nearby countries

produced the same crops, a productivity increase in a competing neighbor would reduce the price

of a country’s exports, so that a country’s gains from trade would be lower when its neighbors were

more productive. Three results suggest this is unlikely. First, sufficiently spatially correlated com-

parative advantage within cereals would imply that ENSO would alter the expenditure-productivity

relationship with the opposite sign of our estimated effect. Second, gravity regressions do not reject

the hypothesis that the trade elasticity is invariant to bilateral distance, consistent with compar-

ative advantage within the cereals sector not being spatially correlated. Third, we examine an

alternative outcome variable that accommodates arbitrary patterns of comparative advantage: a

local approximation of the change in the terms of trade (Dixit and Norman, 1980). This measure

also shows that greater spatial correlation of all-cereals productivity increases welfare inequality.

Understanding the consequences of global phenomena like anthropogenic climate change requires

quantifying both local direct effects and indirect effects due to spatial linkages. The consequences

of spatial correlation assumed in standard trade models are consistent with our empirical esti-

mates, enhancing the credibility of projections produced by these models. By contrast, researchers

producing climate-change impact projections based on quasi-experimental estimates typically omit

these indirect effects. A growing empirical literature examines how economic outcomes respond to

quasi-experimental variation in local temperatures.2 Typically, projected climate impacts for any

2Following seminal studies of the United States (Deschênes and Greenstone, 2007; Schlenker and Roberts, 2009),
quasi-experimental local temperature variation has been used to study various economic effects around the world
(e.g., Dell, Jones and Olken 2012; Burke, Hsiang and Miguel 2015; Carleton et al. 2022).
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location are the product of these estimated effects and that location’s temperature trajectory under

climate change, holding temperatures in other locations fixed. The projected global impact of cli-

mate change is then the sum of these isolated impacts across locations. This calculation, however,

amounts to asking what would happen if, say, Kenya were to warm by itself, without acknowledg-

ing that global climate change will also simultaneously warm Ethiopia, Tanzania, and Canada. In

doing so, this approach fundamentally overlooks the global scope of anthropogenic climate change

(Dell, Jones and Olken, 2014; Hsiang, 2016; Auffhammer, 2018; Deschênes and Meng, 2018).

Our second contribution is to show how to produce climate impact projections that leverage

quasi-experimental estimates and account for changes in the spatial correlation of cereal produc-

tivity without imposing the full structure of quantitative trade models. Prior quasi-experimental

studies project increased dispersion in various economic outcomes across countries (Dell, Jones and

Olken, 2012; Burke, Hsiang and Miguel, 2015). In Section 5, we show that incorporating spatial

correlation leads to a 20% greater increase in the inequality of welfare from cereal consumption by

the end of the twenty-first century. Notably, a projection that omits the change in spatial corre-

lation considerably understates the climate-driven welfare losses from cereals for most countries in

Africa because these countries jointly experience larger productivity losses. While these projections

are not literal forecasts of future climate impacts because they abstract from adaptation, migration,

and other possible responses, they demonstrate how one can extend quasi-experimental research

designs to examine the consequences of spatial interdependence. In particular, our statistical pro-

jection that incorporates spatial effects captures 91% of the increase in the variance of welfare

predicted by a quantitative trade model. In doing so, this paper brings the quasi-experimental

approach to climate-change impacts conceptually closer to recent structural analyses of the spatial

distribution of economic activity under climate change (Brock, Engström and Xepapadeas, 2014;

Desmet and Rossi-Hansberg, 2015; Conte et al., 2021; Cruz and Rossi-Hansberg, 2023; Nath, 2025;

Krusell and Smith, 2022).

This paper connects studies of environmental determinants of economic outcomes to the litera-

ture on economic geography. Local environmental conditions alter economic activity by influencing

factor productivities, human capital accumulation, and institutional quality (Bloom and Sachs,

1998; Easterly and Levine, 2003; Nordhaus, 2006; Bleakley, 2007; Nunn and Puga, 2012). We

explore how local economic outcomes depend on environmental conditions elsewhere via trade.

Generally, countries with better access to trading partners have higher incomes (Head and Mayer,

2004; Redding and Venables, 2004). Our results link the distribution of the gains from trade to

the spatial correlation of productivities. The most closely related study of global agricultural trade

is by Costinot, Donaldson and Smith (2016), who examine the consequences of climate change

using a model of international trade and an agronomic productivity forecast. While we focus on

the spatial correlation of absolute advantage, they focus on changes in comparative advantage and

within-country crop switching. While they employ agronomic forecasts and a nested-CES model

to predict changes in trade flows, we empirically investigate how trade flows respond to changes in

the spatial correlation of productivities using quasi-experimental variation.
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2 Theoretical framework

This section introduces a theoretical framework to show how the spatial correlation of productivities

may affect international inequality and to guide our empirical investigation of this prediction.

Section 2.1 introduces a class of models in which a country’s gains from trade are revealed by the

share of its expenditure devoted to its own output. We use a stylized example to illustrate how

the spatial correlation of the productivity distribution affects welfare inequality by altering the

covariance between a country’s productivity and its domestic share of expenditure.3 Section 2.2

describes how we can estimate this relationship using panel data and why we study the cereals

sector. Further details and derivations are available in Appendix A.

2.1 Spatial correlation and welfare inequality

We study the class of models characterized by Arkolakis, Costinot and Rodŕıguez-Clare (2012),

in which the gains from trade can be inferred from the domestic share of expenditure. This class

includes Armington (1969), Krugman (1980), Eaton and Kortum (2002), and Melitz (2003) with

a Pareto productivity distribution.4 We summarize the perfect-competition case in the main text,

while Appendix A.1 provides details and covers the monopolistic-competition models. The world

economy consists of j = 1, . . . , N countries.

Preferences. Individuals in country j have constant-elasticity-of-substitution preferences over

goods.

Production. There is one factor of production. Perfectly competitive firms employ a pro-

duction technology that exhibits constant returns to scale and depends on productivity Aj . Each

country j inelastically supplies Lj units that earn factor price wj , so national income is Yj = wjLj .

Trade costs. There are iceberg trade costs, such that selling one unit of a good to j from i

requires producing τij ≥ 1 units, with τii = 1.

Gravity equation. Denote sales from i to j byXij and j’s total expenditure byXj ≡
∑N

i=1Xij .

The share of expenditure by j on goods from i, λij , is given by a gravity equation:

λij =
Xij

Xj
=

Aεi (τijwi)
−ε∑N

l=1A
ε
l (τljwl)

−ε ,

where ε is the “trade elasticity” governing how bilateral expenditures respond to bilateral trade

costs.

Equilibrium. In equilibrium, labor markets clear, goods markets clear, and budget constraints

are satisfied such that income Yi equals expenditure Xi. Thus, equilibrium incomes {Yi}Ni=1 satisfy

Yi =
∑N

j=1 λijYj .

A country’s welfare is the sum of its welfare in autarky and its gains from trade, and in this

3Spatial correlation of productivity need not alter average welfare: on a symmetric geography, proximity to
productivity is necessarily zero-sum. Hence our focus on its consequences for international inequality.

4As is common in trade theory, we abstract from dynamics and risk by studying static models.
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class of models the latter can be inferred from expenditure shares. Real consumption per capita is

ln (Ci/Li) = lnAi + γ − 1

ε
lnλii, (1)

where γ is a model-specific constant unrelated to productivity. The former term, lnAi + γ, is per

capita welfare in autarky. Absent trade, a country’s welfare depends on only its own productivity:

it purchases only its own goods, so λii = 1 and lnλii = 0. The latter term, −1
ε lnλii, is its

gains from trade relative to autarky. This sufficient statistic depends on the trade elasticity ε and

the country’s expenditure share on its own goods, which is a function of trade costs and all other

countries’ productivities. When a country imports goods from other countries, λii < 1 and its gains

from trade are positive.5 Importantly, the domestic share of expenditure is an observed outcome

capturing the gains from trade: given the trade elasticity, a lower domestic share of expenditure

implies larger gains from trade.

From equation (1), the variance of welfare across countries is the sum of the variance of pro-

ductivity, the covariance of productivities and gains from trade, and the variance of those gains.

var (ln (Ci/Li)) = var (lnAi) + 2cov

(
lnAi,−

1

ε
lnλii

)
+ var

(
1

ε
lnλii

)
(2)

The spatial correlation of productivities affects international inequality through the second term:

the covariance of productivity and gains from trade.6

By making neighboring countries have more similar productivities, spatial correlation interacts

with two key features of international trade. First, a country benefits by trading with more pro-

ductive counterparts, which demand more of its exports and sell it cheaper imports. Second, trade

costs increase with geographic distance (Disdier and Head, 2008). Thus, when proximate countries

have more similar productivity levels, more productive countries tend to enjoy greater gains from

trade because more productive trading partners are nearby. Conversely, less productive countries

experience lower gains from trade because more productive trading partners are farther away. When

more productive countries gain more from trade than less productive countries, welfare inequality is

greater. Appendix A.2 makes this argument in detail, presenting results of a local approximation,

an analytical proof for a four-country model, and numerical simulations of a many-country model

with a realistic geography.7 Here, we present the results from a highly stylized model in order to

illustrate the economic logic and relevant empirical considerations.

The stylized model has productivity follow a sine wave over a one-dimensional space. There are

N countries with equal population sizes evenly spaced on the unit circle. Trade costs depend only

5Since expenditure shares depend on relative prices, this share is closely linked to the country’s terms of trade,
which is the relative price of its exports compared to its imports. We return to this insight later when considering
an alternative gains-from-trade measure under weaker theoretical assumptions.

6The first term, the variance of productivity, is invariant to spatial correlation by definition. For empirically
relevant values of ε, the third term is an order of magnitude smaller than the second term, as explained in Appendix
A.1.

7To examine our prediction with realistic productivities and trade costs, we simulate a global economy made up
of 158 countries whose geographic coordinates, cereal yields, and crop areas are their 1961–2013 averages in our data.
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on distance: the log trade cost between two countries is proportionate to the log distance between

them. The trade elasticity is ε = 1, so that welfare is lnAi − lnλii, a difference that is easy to

depict visually. Productivity lnAi follows a sine-wave distribution, with an integer frequency of θ

over the circle’s circumference. This distribution has two convenient properties. First, its spatial

correlation is governed by θ: lower frequencies exhibit greater spatial correlation. Second, its mean,

variance, skewness, and kurtosis are independent of this frequency.

The left panel of Figure 3 depicts the spatial distributions of productivities (lnAi, in black),

welfare (lnCi, in blue), and domestic shares of expenditure (lnλii, in red) in this circular economy

for the cases in which the sine wave has frequencies of θ = 1 and θ = 4. It is clear that the spatial

correlation of productivities is greater in the θ = 1 case, as location “zero” divides the circle into

two contiguous regions with above-average and below-average productivity. In this case, productive

economies only need to ship their goods a short distance to reach the most productive economy,

while the least productive country must ship its goods halfway around the world to reach it. This

contrasts with the θ = 4 case, in which distances between the most and least productive countries

are shorter.

Figure 3: Circular geography with productivity sine wave
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Notes: This figure depicts an economy with a circular geography and a productivity distribution that follows a sine
wave with frequency θ. There are N = 50 locations evenly spaced on the unit circle. Bilateral log trade costs are
proportionate to the log length of the arc between two points on the circle. The trade elasticity is ε = 1, so that
welfare is simply the difference lnAi − lnλii. See Appendix A.2.3 for parameterization details. By Theorem 1 of
Allen, Arkolakis and Takahashi (2020), the equilibrium solution depicted for each set of parameter values is unique.
The left panel depicts the (demeaned) distributions of productivities, equilibrium domestic shares of expenditure,
and welfare are depicted for the cases of θ = 1 and θ = 4. The right panel depicts the lnλii–lnAi relationship for the
cases of θ = 1, 2, 3, 4. The right panel’s legend reports the value of Moran’s I for each sine wave.

The frequency of the exogenous productivity sine wave affects the amplitude of the endogenous

welfare sine wave. In the case of higher spatial correlation (θ = 1), the amplitude of the welfare series

is greater than in the θ = 4 case. This follows from the fact that the equilibrium domestic share of

expenditure series has a smaller amplitude in the θ = 1 case, and welfare is the difference between

the productivity and expenditure-share series. In other words, with greater spatial correlation, the

expenditure series follows the productivity series less closely: cov(lnAi, lnλii) is smaller and thus

7



2cov
(
lnAi,−1

ε lnλii
)

is greater.8

The right panel of Figure 3 depicts the relationship between productivity and the domestic

share of expenditure for more values of the sine-wave frequency, θ. The scatter plot reveals an

almost perfectly linear relationship between lnλii and lnAi. The slope of this relationship, which is

proportionate to cov(lnAi, lnλii), systematically varies with the spatial correlation of the sine wave.

When the productivities are more spatially correlated, a location’s domestic share of expenditure is

less responsive to its own productivity level. Our empirical investigation examines the relationship

between these observable outcomes to discern the consequences of spatial correlation for welfare

inequality.

2.2 From theory to empirics

We have illustrated the consequence of spatial correlation of productivities for global welfare in-

equality in an ideal single-sector environment that holds fixed all other economic elements. Our

empirical investigation of how spatial correlation affects the covariance of productivity and gains

from trade must further allow for a realistic geography, arbitrary productivity distributions, the

presence of other determinants of equilibrium trade flows, and multiple sectors. Appendix A.2

presents a number of models with these features to motivate our empirical research design and

Appendix A.3 shows that our prediction holds for each sector in a multi-sector gravity model.9 To

summarize our empirical implementation, we examine our ceteris paribus prediction by exploiting

year-to-year variation in the global cross-sectional spatial correlation of productivities for our sector

of interest in a panel-data setting.

To accommodate a realistic geography, we measure the global spatial correlation of produc-

tivities in year t using Moran’s I, a measure defined on any geography endowed with a distance

metric:

It ≡
N∑

i

∑
j ωij

∑
i

∑
j ωij

(
lnAit − lnAt

) (
lnAjt − lnAt

)∑
`

(
lnA`t − lnAt

)2 .

In this formula, N is the number of countries, ωij = ωji is a symmetric spatial weight that depends

on the distance between countries i and j, and lnAt ≡ 1
N

∑
i lnAit is average productivity in year

t. In the circular sine-wave economy of Section 2.1, Moran’s I is 0.242 and -0.011 for the θ = 1 and

θ = 4 cases, respectively.

We use panel data to address other determinants of the domestic share of expenditure that may

be correlated with productivity. For example, remote countries face higher-than-average trade costs

that raise their domestic share of expenditure and remote countries may also exhibit lower pro-

ductivities. In our panel setting, time-invariant country characteristics that influence the domestic

8We assume here that the trade elasticity ε is invariant to the global spatial correlation of productivities. Section 3.2
and Appendix C show that our empirical setting satisfies this assumption.

9Of course, inequality in real consumption per capita within one sector is only equivalent to welfare inequality in
a one-sector model. Appendix A.3 shows that, if sectoral productivities are uncorrelated (or positively correlated),
greater spatial correlation of productivities in one sector raises welfare inequality in the trading equilibrium, but
between-sector adjustments dampen this effect relative to the one-sector model.
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share of expenditure and might be correlated with productivity can be absorbed by country fixed

effects.10 Likewise, year fixed effects absorb potentially confounding time-varying global shocks,

and country-specific trends absorb secular local growth in productivity and trade.

Using a panel of countries at an annual frequency, we estimate the following regression:

lnλiit = β0 lnAit + β1It lnAit + Π′Zit + µit, (3)

where λiit is country i’s domestic share of expenditure in year t, Ait is its productivity, It is the

Moran’s I statistic for the spatial correlation of productivities, and the vector Zit includes country

fixed effects, year fixed effects, and country-specific time trends. µit is a residual due to unobserved

shocks and the linear approximation.

Our aim is to characterize the relationship between lnλii and lnAi in order to examine whether

that relationship is flatter with greater global spatial correlation. The relationships simulated in

the right panel of Figure 3 motivate our specification of equation (3), which includes both cereal

productivity and its interaction with the global spatial correlation of cereal productivities. The

coefficient β0 captures the relationship between a country’s gains from trade and productivity

when Moran’s I is zero. The coefficient on the interaction term β1 captures the degree to which

the global spatial correlation of productivities mediates this covariance between gains from trade

and productivity.11

When β1 < 0, greater spatial correlation lowers the covariance of productivity and the domestic

share of expenditure, implying a higher covariance between productivity lnAi and the sufficient

statistic for the gains from trade, −1
ε lnλii. When greater spatial correlation of productivities causes

more productive countries to experience greater gains from trade and less productive countries to

experience lower gains from trade, international inequality increases.

Our choice of empirical setting is guided by four criteria. First, trade flows must decline with

distance so that countries tend to trade with their neighbors. Second, examining the role of the spa-

tial correlation of productivities across a trade network requires a measure of productivity reported

in comparable terms across the globe. Third, examining global spatial correlation requires sufficient

time-series variation to identify its effects. Fourth, the identifying variation in productivities and

their global spatial correlation needs to be plausibly exogenous to infer a causal relationship.

To satisfy these criteria, we study the cereals sector, which we define as the top eight cereals that

account for more than 99% of global cereal production and trade.12 Trade in cereals declines with

10Appendix A.2.3 illustrates this logic for the case of heterogeneous population sizes.
11While equation (3) is a reduced-form regression, Appendix A.2.4 shows that it captures 93% of the welfare

variance generated by our one-sector trade model with the most realistic geography.
12These cereals are barley, maize, millet, oats, rice, rye, sorghum, and wheat. According to the FAO, these eight

cereals constituted 99.3% of global production (in metric tons) and 99.6% of global trade (in nominal US dollars)
during 1961–2013. These cereals are not homogeneous goods. FAO data report quantities of wheat produced, but
trade data distinguish durum and non-durum wheat. Trade data distinguish four types of rice, but the International
Rice Genebank holds more than 125,000 rice varieties, which are differentiated by quality, appearance, and taste
(Agcaoili-Sombilla and Rosegrant, 1994). Quantitative trade models make common predictions about trade flows
while making different assumptions about the set of goods in the utility function. We study expenditure shares, so
we need not map our data sources’ product definitions to goods indexed by ω in the theoretical framework.
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distance: column 1 of Table C.1 shows that bilateral trade in cereals declines with physical distance

with an elasticity and overall explanatory power that is typical of prior estimates for aggregate trade

flows (Head and Mayer, 2014). Cereals satisfy the second and third criteria because a measure of

productivity, cereal yield (the output-land ratio), is available at the country-year level with nearly

global coverage since 1961 from the United Nations Food and Agriculture Organization (FAO).13,14

Our fourth criteria requires exogenous variation in national cereal productivities and their global

spatial correlation. Estimating equation (3) by ordinary least squares (OLS) is uninformative if

expenditure shares and productivity are simultaneously determined or if there are omitted deter-

minants of expenditure shares that are correlated with productivity.15 In an ideal experiment, a

researcher would manipulate productivities around the world in a way that alters the global spatial

correlation of productivities without changing the global mean or variance of productivities. Such

an experiment is obviously not possible. However, because of the well-established sensitivity of ce-

real yields to environmental conditions (Schlenker and Roberts, 2009; Hsiang and Meng, 2015), we

are able to approximate this ideal experiment by exploiting productivity variation attributable to

temperature variation and a global climatic phenomenon known as the El Niño-Southern Oscillation

(ENSO), described in the following section.

Finally, translating the consequences of spatial correlation for trade patterns into welfare con-

sequences relies on the assumptions made in the Arkolakis, Costinot and Rodŕıguez-Clare (2012)

class of models. In particular, this theoretical framework assumes that the pattern of comparative

advantage within the sector is symmetric across countries so that the exports of neighboring and

distant economies are similarly substitutable.16 Most quantitative trade models assume this pattern

of comparative advantage.17 However, as Appendix A.4 shows, in alternative trade models with

spatially correlated patterns of comparative advantage, a country may have lower gains from trade

when its neighbors are more productive. When neighboring countries produce closer substitutes,

higher productivity in a neighbor increases the supply of competing crops, worsening a country’s

terms of trade.

13If land and other inputs are perfect complements in the production of cereals, yield equals total factor productivity
(TFP) (Costinot, Donaldson and Smith, 2016). More generally, land productivity and TFP may differ, in which case
one needs an instrument for yield that shifts its TFP component. Using weather as a source of exogenous variation
in cereal yields is a popular research design (e.g., Roberts and Schlenker 2013) that dates to the first application of
instrumental variables (Wright, 1928).

14Unfortunately, data on other sectors’ expenditure shares and productivities lack the spatial and temporal coverage
necessary for our empirical analysis. Data availability also necessitates studying cereal trade at the level of countries.
Annual data on agricultural productivity, internal trade, and population counts for subnational spatial units have not
been collected by most countries for most years. We therefore focus on international trade and the spatial correlation
of productivities across countries.

15For example, demand shocks could affect expenditure shares and elicit supply responses that change average
yields. Similarly, if domestic cereal production employs imported intermediate goods, then unobserved trade-cost
shocks could jointly affect domestic cereal yields and the domestic share of expenditure.

16Comparative advantage causes countries to gain by specializing and trading with each other. Absolute advantage
affects how these gains from trade are divided between countries through the terms of trade. Our prediction concerns
the spatial correlation of absolute advantage. In Appendix A.4, we examine how the spatial correlation of comparative
advantage may interact with the spatial correlation of absolute advantage.

17A notable exception is recent work by Lind and Ramondo (2023) that generalizes quantitative Ricardian models
by tractably relaxing this assumption.
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Three empirical findings address this potential concern about spatially correlated comparative

advantage. First, if comparative advantage were sufficiently spatially correlated, β1 in equation (3)

would be positive (see Appendix A.4). Our estimates of β1 in Sections 4.2 and 4.3 are negative.

Second, per Lind and Ramondo (2023), spatially correlated comparative advantage would require

the trade elasticity to vary with the distance between trading partners. Gravity regressions cannot

reject the hypothesis that the trade elasticity is invariant to bilateral distance (see column 3 of

Table C.1), so we cannot reject the hypothesis that comparative advantage within cereals is not

spatially correlated. Third, we find qualitatively consistent results when examining an alternative

outcome variable that is informative under much weaker theoretical assumptions.

Specifically, we examine changes in the terms of trade – changes in the prices of exports relative

to imports – as measured by the product of price changes and the previous period’s traded quantities

(Dixit and Norman, 1980, p.132). A country’s terms of trade improve if its initial net import vector

is cheaper at the new prices than at the old prices.18 This measure is attractive because it only

requires a revealed-preference argument. Unfortunately, unlike the domestic share of expenditure

modeled in equation (3), this measure limits any conclusions about the welfare consequences of

trade to its sign: whether a country’s terms of trade improved or deteriorated. We use this outcome

variable in Section 4.4 and find similar consequences of greater spatial correlation as we do when

making stronger assumptions.

3 The El Niño-Southern Oscillation

This section first summarizes the basic physics of ENSO and then empirically demonstrates that it

drives annual variation in the global spatial correlation of cereal productivity.

3.1 Background

ENSO is a naturally occurring, annual climatic phenomenon characterized by mutually reinforcing

circulation patterns between the atmosphere and the tropical Pacific ocean. While ENSO originates

in the tropical Pacific, it is a major determinant of weather conditions around the world. Indeed,

at an annual frequency, ENSO is often recovered as the first principal component of various local

atmospheric or oceanographic variables across the planet (Sarachik and Cane, 2010).

ENSO is often colloquially described as consisting of one neutral state and two extreme states.

These conditions are broadly characterized by the amount of heat that is released from the tropical

Pacific ocean into the atmosphere (Cane and Zebiak, 1985). In typical “ENSO neutral” years,

normal circulation patterns pushing westward hold a pool of warm water against Indonesia and

other land masses in the South Pacific. A positive “El Niño” state occurs when this circulation

pattern weakens such that this pool of warm water spills eastward across a large area of the

18To see the connection between gains from trade and terms of trade in quantitative trade models, consider the
Armington case detailed in Appendix Section A.1. In that model, the gains from trade are given by the price of a

country’s export relative to its consumer price index, λ
− 1
ε

ii = pi/
[∑N

l=1 (pli)
−ε
]−1/ε

.
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equatorial Pacific Ocean. With warm water exposed to the atmosphere over a greater sea surface

area, El Niño years release more ocean heat into the atmosphere over a relatively short period. The

opposite occurs during the negative “La Niña” state. In La Niña years, stronger circulation patterns

push the same volume of warm water more firmly against the Indonesian landmass, reducing sea-

surface contact with the atmosphere and thus reducing heat released from the ocean. While these

three distinct states are descriptively convenient, there is in fact a continuum of ENSO conditions

corresponding to the amount of heat released into the tropical atmosphere.

ENSO conditions in the tropical Pacific affect the spatial pattern of weather conditions across

the planet due to how heat travels when released in the tropics. Because there is almost no

Coriolis effect near the equator (a result of the simple facts that the Earth is round and spins),

atmospheric signals propagate rapidly throughout the tropics. During a positive ENSO event, the

warm air initially released above the tropical Pacific Ocean is propagated throughout the tropics by

a transport mechanism in the atmosphere known as an equatorial Kelvin wave that sweeps across

the globe, altering weather conditions almost simultaneously throughout the tropics (Chiang and

Sobel, 2002).19 For this reason, it is often said that the tropical atmosphere is “teleconnected”

during a positive ENSO event, as atmospheric conditions in locations distant from each other are

linked through this mechanism. Because the equatorial Kelvin wave that connects local weather

around the equator is confined primarily to the tropics, the weather conditions that prevail during

a positive ENSO event do not generally extend to higher latitudes, which may in fact experience

opposing weather conditions because of changes to atmospheric circulation.

This physical mechanism allows ENSO to induce large areas of the planet to experience similar

local temperature, precipitation, humidity, and other weather conditions. The spatial consequences

of a positive ENSO event are perhaps best illustrated by temperature.20 During a positive ENSO

event, temperature conditions around the world are reorganized such that there is a spatially

contiguous area of relatively warm temperatures across the tropics and subtropics while almost

simultaneously there is a spatially contiguous area of relatively cooler temperatures in higher-

latitude locations. The opposite occurs during negative ENSO events: less heat is released into the

atmosphere and temperatures across the globe are less spatially organized.

ENSO conditions are typically summarized by the average sea-surface temperature over a fixed

area in the tropical Pacific. In our main analysis, we employ the widely used NINO4 index, a

statistic defined as average ocean temperature (in degrees Celsius) over a rectangular area bounded

by 5◦S - 5◦N, 160◦E - 150◦W (see Figure E.2).21 Figure 4 plots this monthly ENSO index for

1856–2013, which extends back further than our estimation sample period of 1961–2013. There

are two important features of ENSO relevant for our empirical application: (i) the monthly timing

of a typical ENSO event and (ii) how an ENSO event influences local temperatures around the

19This tropical phenomenon is described in Hsiang and Meng (2015). For a complete scientific treatment of ENSO
physics, see Sarachik and Cane (2010).

20ENSO alters the spatial structure of other weather variables but these effects tend to be of smaller spatial scales.
For example, during positive ENSO events there is typically flooding over the Pacific coast of South America while
the Atlantic coast of South America primarily experiences droughts (Ropelewski and Halpert, 1987).

21In robustness checks, we show that using other measures of ENSO yields similar empirical results.
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planet both spatially and temporally. Due to ENSO’s tropical origins, the timing of ENSO events

Figure 4: Monthly ENSO index (1856–2013)
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Notes: This figure depicts the monthly ENSO index (i.e., NINO4) during 1856–2013. The shaded area shows our
1961–2013 sample period.

is phase-shifted relative to the calendar year. Figure E.3 illustrates this timing by plotting the

monthly ENSO index 12 months before and after a given December for the 10 most positive ENSO

events during 1961–2013. An ENSO event generally begins during April-May of a given year and

lasts until the following April-May, an interval known as the “tropical year.” Because the ENSO

index typically peaks in December, the cleanest annual measure of any ENSO event is simply the

December value of the index.22 In all following empirical analyses, we use December values as our

year-to-year measure of ENSO.

A typical ENSO event affects local temperatures around the planet in a spatially and temporally

distinct manner. Figure 5 depicts the month-by-month structure of warming that occurs when the

ENSO index increases. Each map displays the time-series correlation of monthly temperatures for

each pixel during the specified month and ENSO in month zero, defined as December. Yellow,

orange, and red colors indicate locations that warm as the ENSO index increases; blues indicate

locations that cool. In the May before a December ENSO event (month -7), the east equatorial

Pacific begins to warm. Regions throughout the tropics, both over land and the oceans, continue

to warm for the next several months, peaking in the eastern Pacific in December (month 0) and

over the rest of the tropics in March and April (months +3 and +4). This warming then dissipates

across the tropics, with little effect visible more than a year after the December peak. Higher

latitudes experience some cooling through these months, though the effect is weaker.

Figure 5 also shows that the local impacts on temperatures around the planet from a single

22This measure of ENSO is stationary and does not exhibit serial correlation. A Dickey-Fuller test strongly rejects
the presence of a unit root in favor of stationarity (p=4.15e-21). We do not detect any statistically significant
coefficients when estimating a time series regression of our annual December NINO4 measure of ENSO on a constant,
a linear trend, and five lagged terms with optimal bandwidth Newey-West standard errors.
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Figure 5: Lead and lag local temperature correlation with December ENSO

Notes: Each panel shows pixel-level (0.5◦ latitude by 0.5◦ longitude resolution) correlation between the ENSO
index in December and pixel-level monthly temperatures for 11 months before (lead) and 12 months after (lag)
December. Blue shows areas with negative correlation. Red shows areas with positive correlation.
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ENSO event straddles two calendar years. When using annual socioeconomic data reported by

calendar years, one must therefore examine how outcomes in a given year depend on both ENSO

in that year and ENSO in the previous year.

3.2 ENSO and the spatial correlation of cereal productivity

The spatial and temporal patterns shown in Figure 5 suggest that ENSO could drive the spatial

correlation of cereal yields. Figure 6 shows country-level responses of log cereal yields to a 1-degree

increase in the sum of contemporaneous and lagged December ENSO indices.23 Consistent with the

climatic dynamics described above, increases in the ENSO index tend to lower cereal productivities

in countries near the equator and raise cereal productivities in countries far from the equator. This

pattern suggests an increase in the spatial correlation of cereal yields.

Figure 6: ENSO’s effects on cereal yields

Notes: This map shows the linear coefficient on the sum of contemporaneous and lagged ENSO for each country’s
log cereal yield. Each country-specific time-series model includes a constant and a linear time trend.

To quantify global spatial correlation in each year, we construct an annual Moran’s I statistic

for country-level log cereal yields.24 Figure 7 shows the relationship between ENSO and the global

spatial correlation of cereal productivity. To characterize the ENSO phenomenon in terms of a

scalar, we plot the sum of December ENSO indices in years t and t− 1 on the horizontal axis and

Moran’s I in year t on the vertical axis. An increase in the ENSO index raises this measure of

spatial correlation. ENSO, in this simple bivariate model, explains 12% of annual variation in the

spatial correlation of cereal productivities.25

23Our country-by-year measure of aggregate cereal yield is the harvested area-weighted cereal-level yield across the
eight major cereals. See Appendix B for data details.

24In our empirical applications, we use spatial weights ωij = 1/(dij + 1), where dij is the great-circle distance, in
kilometers, between the two countries’ area-weighted centroids. Using ωij = 1/dij (with ωii = 0) produces estimates
very similar to those presented in Section 4.

25By contrast, ENSO only predicts 0.0003 of the local spatial correlation of cereal productivities in our sample,
making it poorly suited as an instrument for local spatial correlation.
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Figure 7: Moran’s I for log cereal yields and ENSO

coef=0.005, se=0.002, R2=0.12
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Notes: Figure shows the relationship between Moran’s I of crop-weighted country-level log cereal yields in year t
and the sum of contemporaneous and lagged December ENSO. The solid line depicts the line of best fit and the
dashed series is a local polynomial.

To relax the timing simplification used in Figure 7, Table 1 presents regressions of the annual

Moran’s I statistic for log cereal yields on flexible polynomial functions of December ENSO in

years t and t − 1. Each model includes a linear time trend and reports standard errors robust

to serial correlation and heteroskedasticity. In column 1, we include only linear contemporaneous

and lagged ENSO terms. Column 2 adds quadratic contemporaneous and lagged ENSO terms

and a linear interaction term. Column 3 estimates the linear and quadratic effects for the sum

of contemporaneous and lagged ENSO. This more parsimonious specification effectively imposes

a common coefficient for ENSOt and ENSOt−1 and a common coefficient for ENSOt × ENSOt−1,

ENSO2
t , and ENSO2

t−1. Looking across the columns of Table 1, two results are evident. First, both

contemporaneous and lagged ENSO affect the spatial correlation of cereal productivity but only

after controlling for higher-order terms, as shown in column 2. Second, the model in column 3

produces a stronger fit than that in column 2, as summarized by a lower Bayesian Information

Criterion (BIC) value. To strike a balance between non-linear flexibility and avoiding overfitting,

we use the functional form in column 3 to model the relationship between ENSO and the global

spatial correlation of cereal productivity throughout Section 4.

It is natural to wonder whether one could simply drive global spatial correlation of cereal

productivity using the global spatial correlation of temperatures rather than ENSO. That measure

would capture temperature variation caused by both ENSO and other climatic factors. Column 4

shows that, while the annual Moran’s I statistic for temperatures is correlated with the annual
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Moran’s I for cereal productivities, it has lower predictive power than ENSO, as reflected by a

higher BIC statistic. This may be because cereal yields depend on other environmental conditions

besides temperature, such as precipitation and humidity, many of which also become more spatially

correlated under a positive ENSO event. These other environmental channels are captured by ENSO

in columns 1–3 and not by the global spatial correlation of only temperature in column 4. For this

reason, our benchmark regression in the following section uses ENSO directly. Consistent with

column 4 of Table 1, we show that the regression coefficients are less precisely estimated when we

use the spatial correlation of temperatures in place of ENSO.

Finally, consistent with our thought experiment in Section 2.1, ENSO affects neither the global

mean nor the variance of cereal productivity, as shown in Figure 8. We have also assumed that

the trade elasticity is unaffected by changes in the spatial correlation of productivities. Consistent

with this assumption, column 2 of Table C.1 shows that the estimated coefficient on distance in a

gravity model of bilateral trade flows is invariant to ENSO. We also present a more direct test of

whether ENSO affects comparative advantage within cereals in Section 4.3.

Figure 8: Global cross-sectional mean and variance in cereal productivity and ENSO
coef=0.007, se=0.020, R2=0.002
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coef=0.003, se=0.013, R2=0.001
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Notes: The left (right) panel shows the relationship between the mean (variance) of cross-sectional country
log cereal yields and the sum of contemporaneous and lagged December ENSO. Linear fit shown as solid line.
Local polynomial fit shown as dashed line.
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Table 1: Moran’s I in cereal productivity and ENSO
Outcome is Moran-I in log cereal yields

(1) (2) (3) (4)

ENSOt 0.008 0.008
(0.002) (0.002)
[0.000] [0.000]

ENSOt−1 0.003 0.005
(0.002) (0.002)
[0.121] [0.008]

ENSOt x ENSOt−1 0.004
(0.003)
[0.148]

ENSO2
t -0.001

(0.002)
[0.639]

ENSO2
t−1 0.004

(0.003)
[0.197]

(ENSOt + ENSOt−1) 0.006
(0.001)
[0.000]

(ENSOt + ENSOt−1)2 0.002
(0.001)
[0.070]

It(Tit) 0.541
(0.163)
[0.001]

BIC -275.84 -267.21 -276.63 -272.95
Observations 53 53 53 53
Notes: Time-series regressions of Moran’s I in log cereal yields
on nonlinear functions of contemporaneous and lagged December
ENSO. All models include a linear time trend. Serial correlation and
heteroskedasticity-robust standard errors with optimal bandwidth in
parentheses (Newey and West, 1987); p-values in brackets.

4 Empirical results

The theoretical results in Section 2 suggest that the covariance between agricultural productiv-

ity, lnAi, and the domestic share of expenditure, lnλii, should be lower when productivities are

more spatially correlated. This section examines this relationship using exogenous temperature-

and ENSO-driven changes in productivities and their global spatial correlation. We describe our

estimation strategy in Section 4.1, present the main empirical results in Section 4.2, examine a

series of robustness checks in Section 4.3, and corroborate our results using terms-of-trade changes

in Section 4.4. Appendix B details our data sources.
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4.1 Estimation strategy

To estimate equation (3), we employ an instrumental-variables (IV) strategy that exploits plausibly

exogenous variation in local yields and the global spatial correlation of yields. To drive local

yields, we use country-level crop-area-weighted annual temperature, Tit, constructed using data

from Willmott and Matsuura (2001) (see Appendix B). As described in Section 3, global spatial

correlation of yields is driven by contemporaneous and lagged ENSO.

Equation (3), our second-stage equation, has two endogenous variables, lnAit and It lnAit. We

instrument for them using the following first-stage equations:

lnAit = α′11f(Tit) + α′12f(Tit)g(ENSOt + ENSOt−1) + Γ′1Zit + υ1it (4)

It lnAit = α′21f(Tit) + α′22f(Tit)g(ENSOt + ENSOt−1) + Γ′2Zit + υ2it (5)

where the vector of semi-parametric controls, Zit, includes the same variables as equation (3).

α′11, α′12, α′21, and α′22 are vectors of first-stage coefficients. f() captures the relationship between

local temperature and yield; nonlinearity in f() is well documented (Schlenker and Roberts, 2009;

Schlenker and Lobell, 2010; Welch et al., 2010; Moore and Lobell, 2015; Proctor et al., 2018). In

particular, we model f() as a restricted cubic spline of local temperature; the choice of the number

of splines is detailed below. g() captures the relationship between ENSO and the global spatial

correlation of yields. Following the model-selection results in Table 1, g() is a quadratic function

of (ENSOt + ENSOt−1). υ1it and υ2it are error terms.

Nonlinear functional forms for f() and g() are necessary to capture nonlinearities in our first-

stage equations, but this means that we have more than two instruments for the two endogenous

variables. Two-stage least squares (2SLS) estimation in such over-identified IV settings can exac-

erbate issues with biased point estimates and incorrectly sized inference. These issues worsen if the

many instruments are also weak (Bound, Jaeger and Baker, 1995).26

We address this concern using several weak-instrument diagnostics. First, we employ the limited

information maximum likelihood (LIML) IV estimator, which is approximately median-unbiased for

over-identified models (Mariano, 2001). Second, we conduct tests to detect weak instruments in our

LIML estimator. Third, we conduct inference that is robust to the presence of weak instruments.

4.2 Main results

To begin, consider OLS estimates of β0 and β1 from equation (3), reported in column 1 of Table 2.

The OLS estimate of β0 has the expected sign and is statistically distinct from zero, but the OLS

estimate of β1 is indistinct from zero and, in fact, positive.

Columns 2 through 6 of Table 2 report IV estimates that address the potential bias of the OLS

estimates. Across columns, we vary the number of spline terms in the temperature function f().

26Indeed, the use of local temperature in first-stage equations (4) and (5) is intended to ameliorate the over-
identification problem. One could alternatively predict lnAit and It lnAit using flexible functions of country-specific
ENSO effects. However, that approach would involve many more instruments as our sample has over 130 countries.
Our benchmark specification for equations (4) and (5) employs 12 instruments.
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Column 2 has two spline terms, the minimum needed to capture nonlinearity in f(). Each subse-

quent column adds another spline term in f().27 Because all models include a quadratic function

of the sum of contemporaneous and lagged ENSO, this corresponds to 6, 9, 12, 15, and 18 instru-

ments used jointly across the first-stage equations (4) and (5).28 Panel A shows 2SLS estimates,

while panel B shows LIML estimates. Because ENSO varies only in the time dimension, we cluster

standard errors by year to allow arbitrary forms of spatial correlation and heteroskedasticity across

countries within a given year. In robustness checks, we consider other error structures, including

the Bekker (1994) adjustment that accounts for LIML standard errors being potentially too small

in the presence of many weak instruments.

The OLS estimate of β0 appears to be biased downward relative to the IV estimates, suggesting

that lnAit and µit are negatively correlated. One potential source of such OLS bias would be

demand shocks for domestic output, as a positive shock would raise the value of the dependent

variable and lower the average-productivity regressor if domestic production exhibited decreasing

returns. Similarly, an exogenous increase in trade costs could increase the value of the dependent

variable and decrease cereal yields if production employs imported inputs.

The 2SLS estimates reported in panel A of Table 2 show β̂0 > 0 and β̂1 < 0, with little

variation in the point estimates across columns 2 to 6. The 2SLS estimates of both parameters

are also statistically different from the OLS estimates, suggesting that the 2SLS estimates do not

exhibit the same bias as the OLS estimates and thus are not the result of completely uninformative

instruments. However, in over-identified IV settings, 2SLS estimates are still biased and incorrectly

sized. This is evident in that the Cragg and Donald (1993) joint F-statistic for both first-stage

regressions is well below the Stock and Yogo (2005) critical values for 10% maximal 2SLS bias and

size across columns 2 to 6 of Panel A.

As an alternative to 2SLS, panel B of Table 2 presents LIML estimates. Again, we find very

similar point estimates for β̂0 > 0 and β̂1 < 0 across the varying number of temperature splines in

columns 2 to 6. The LIML estimates are even farther away from the OLS estimates than the 2SLS

estimates, suggesting that the LIML estimator mitigates biases in our 2SLS estimates.

LIML is an approximately median-unbiased estimator in over-identified settings, but its stan-

dard errors may still be incorrectly sized in the presence of weak instruments. We report two tests

to assess whether weak instruments are a concern. First, across columns 2 to 6, the Cragg-Donald

joint F-statistic for both first-stage regressions is above the Stock-Yogo critical values for 10% max-

imal LIML size, which rejects the presence of weak instruments. However, the Stock-Yogo critical

values are only valid for iid errors. While we also report the Kleibergen-Paap F-statistic, which

27Two to six spline terms correspond to three to seven knots. Knots are placed between equally spaced percentiles
of the temperature empirical distribution according to Harrell (2001).

28Columns 1–5 of Table F.1 show first-stage statistics for α′11 and α′12 from equation (4) and α′21 and α′22 from
equation (5), corresponding to the IV specifications shown in columns 2–6 of Table 2. They show p-values from F-tests
examining the joint significance of elements in each vector of first-stage coefficients. As expected, uninteracted local
temperature is consistently a strong predictor of local cereal yields in first-stage equation (4). For the interaction
between local yields and the global spatial correlation of yields in first-stage equation (5), both uninteracted local
temperature (i.e., 0th order ENSO) and local temperature interacted with ENSO (i.e., 1st and 2nd order ENSO) are
strong predictors.
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Table 2: Domestic shares of expenditure and the spatial correlation of productivities
Outcome is log domestic share of expenditure

(1) (2) (3) (4) (5) (6)
OLS IV IV IV IV IV

Panel A: 2SLS estimates

lnAit (β0) 0.284 1.541 1.746 1.696 1.701 1.654
(0.119) (0.515) (0.542) (0.412) (0.425) (0.431)
[0.021] [0.004] [0.002] [0.000] [0.000] [0.000]

lnAit × It (β1) 0.758 -3.321 -3.440 -3.391 -3.350 -3.290
(0.487) (2.071) (2.148) (1.476) (1.493) (1.555)
[0.126] [0.115] [0.115] [0.026] [0.029] [0.039]

Pct. change in one-sector welfare variance -0.353 1.536 1.591 1.568 1.549 1.521
from 1 s.d. increase in It (0.226) (0.976) (1.023) (0.716) (0.728) (0.754)

[0.119] [0.116] [0.120] [0.029] [0.033] [0.044]

Panel B: LIML estimates

lnAit (β0) 2.110 2.380 2.114 2.196 2.308
(0.837) (0.847) (0.604) (0.669) (0.771)
[0.015] [0.007] [0.001] [0.002] [0.004]

lnAit × It (β1) -4.530 -4.907 -4.144 -4.218 -4.463
(2.752) (2.937) (1.834) (1.949) (2.194)
[0.106] [0.101] [0.028] [0.035] [0.047]

Pct. change in one-sector welfare variance 2.091 2.264 1.914 1.948 2.060
from 1 s.d. increase in It (1.407) (1.497) (0.954) (1.035) (1.191)

[0.137] [0.131] [0.045] [0.060] [0.084]

Number of temperature splines in f() 2 3 4 5 6
ENSO polynomial order in g() 2 2 2 2 2
Number of instruments 6 9 12 15 18
Cragg-Donald F-stat 7.052 5.832 5.174 4.324 3.801
Stock-Yogo crit. value: 10% max 2SLS bias 9.480 10.430 10.780 10.930 11.000
Stock-Yogo crit. value: 10% max 2SLS size 21.680 27.510 32.880 38.080 43.220
Stock-Yogo crit. value: 10% max LIML size 4.060 3.700 3.580 3.540 3.560
Kleibergen-Paap F-stat 6.100 5.664 3.963 3.332 3.069
Anderson-Rubin weak-id robust joint p-value 0.000 0.000 0.000 0.000 0.000
BIC for first stage equations -30933.7 -30917.4 -31134.0 -31120.2 -31091.8
Observations 5452 5452 5452 5452 5452 5452

Notes: This table reports estimates of β0 and β1 from equation (3). Column 1 shows OLS estimates. Columns
2–6 show IV estimates that vary by the number of temperature spline terms in f(). Panel A (B) shows 2SLS
(LIML) IV estimates. All models include quadratic ENSOt + ENSOt−1 terms and incorporate country fixed
effects, year fixed effects, and country-specific linear trends as included instruments. Standard errors, clustered by
year, in parentheses; p-values in brackets. Appendix D.1 describes how we compute the percentage change in the
variance of welfare in a one-sector model caused by a one-standard-deviation increase in Moran’s I relative to the
historical mean assuming ε = 8.59, with those standard errors calculated using the delta method.

is more appropriate given our clustered error structure (Kleibergen and Paap, 2006), there are no

established critical values for non-iid errors. We therefore cannot entirely rule out the presence of

weak instruments solely by looking at first-stage F-statistics. Second, we turn to inference methods

that are robust to the presence of weak instruments. For each IV model in columns 2 to 6, we

present the p-value from the Anderson-Rubin test of the null hypothesis that β0 and β1 in equa-

tion (3) are jointly zero (Anderson and Rubin, 1949). This null hypothesis is strongly rejected.
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The combined evidence from these various diagnostics suggests that weak instruments are not a

concern. This gives us confidence that our LIML estimates are unbiased and correctly sized.

Which number of spline terms in the temperature function f() yields the most informative esti-

mates of our parameters of interest? Note that this model selection is not crucial to our conclusions:

across columns 2 through 6, the point estimates of β0 and β1 do not vary much. All the estimates of

β0 have p-values near or below 0.01, and the LIML estimates of β1 have p-values ranging from 0.03

to 0.11. To select one specification, we employ the Bayesian Information Criterion (BIC) statis-

tic from a joint seemingly unrelated regression of first-stage equations (4) and (5) to address the

trade-off between capturing nonlinearities in f() and having too many spline terms in f(). Table 2

shows that the BIC statistic is minimized with four temperature spline terms in column 4. This

corresponds to the specification with the most precise LIML estimates of β0 and β1, with p-values

of 0.001 and 0.03, respectively, and will serve as our benchmark model moving forward.

Per the theoretical framework in Section 2, our empirical estimates suggest that the spatial

distribution of productivity affects a country’s terms of trade, as revealed by its domestic share

of expenditure. The positive relationship between its own productivity and domestic share of

expenditure (β̂0 > 0) reveals that higher productivity worsens the terms of trade. This deterioration

is dampened when productivities are more spatially correlated (β̂1 < 0) since higher productivity

in neighboring countries improves a country’s terms of trade.29 We corroborate this terms-of-trade

interpretation using observed changes in unit values in Section 4.4.

For the class of one-sector models introduced in Section 2, these estimated effects imply an

increase in the global variance of welfare. Suppose that the cross-sectional global spatial correlation

of agricultural productivity were to increase by one standard deviation relative to the historical

mean. Applying the single-sector expression for the variance of welfare in equation (2) to our

benchmark LIML estimates in column 4, panel B of Table 2, we find that a one-standard-deviation

increase in the spatial correlation of productivities leads to a statistically significant 2% increase in

the cereal contribution to welfare inequality.30

4.3 Additional robustness checks

This section presents several robustness checks of our main empirical result. They are designed

to test the validity of our statistical assumptions, the interpretation of our results, and the con-

sequences of our data-construction choices. Our benchmark model throughout is that shown in

column 4, panel B of Table 2.

29At empirically observed levels of spatial correlation, this does not reverse the positive relationship between lnAit
and lnλiit. As shown in Figure 7, the spatial correlation of cereal yields lies between 0.17 and 0.25 in our estimation
sample. Thus, β̂0 + β̂1 × It > 0 at all historical values of It for the estimates reported in Table 2.

30See Appendix D.1 for details of this calculation. As a point of comparison, Kopczuk, Saez and Song (2010) find
that the annual variance of log earnings across U.S. workers increased on average by 2% per year between 1970–
2003. In a multi-sector model, this value is one term in a sum (see equations A.9 and A.10), so we refer to it as
the cereal contribution to welfare inequality. As described in Appendix A.3, it is possible to construct productivity
patterns, such as perfectly anti-correlated sectors, in which the within-sector covariance we report is wholly offset by
between-sector covariances.
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Randomization inference Our main source of identifying variation is time-series fluctuations

in the global ENSO cycle, shown in Figure 4. While it is plausible that ENSO is uncorrelated with

unobserved determinants of domestic shares of expenditure over a large sample of years, spurious

correlations could occur within a 53-year sample.

To examine the relevance of this small-sample concern, we conduct a placebo test by randomly

reshuffling years (i.e., drawn without replacement) of our panel data, breaking the time-series

link between domestic shares of expenditure and ENSO- and local-temperature driven changes in

country-level cereal yields and the global spatial correlation of yields.31 This allows us to obtain

an empirical distribution of our estimated reduced-form coefficients, β̂0 and β̂1, under placebo con-

ditions and compute the probability of observing our benchmark estimates if years were randomly

assigned.

The left and right panels of Figure 9 show the empirical distribution for β̂0 and β̂1, respectively,

for 10,000 samples. The vertical lines show the location of our estimated β̂0 and β̂1 from the

observed data. It is highly unlikely that our main result is due to small-sample bias.

Figure 9: Randomization inference
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Notes: Empirical distributions of β̂0 (left panel) and β̂1 (right panel) from 10,000 samples of 53 years drawn from

the original data without replacement. Vertical lines show β̂0 and β̂1 from observed data estimated using benchmark
model in column 4, panel B of Table 2.

Standard errors Standard errors are clustered by year in our benchmark model because ENSO

varies in the time dimension. Table F.2 considers alternative error structures. Column 1 reproduces

our benchmark results. To account for serial correlation, column 2 allows year-level clustering and

common serial correlation across countries within a 20-year rolling window following Driscoll and

Kraay (1998). Column 3 allows differential serial correlation and heteroskedasticity across countries

over our entire sample period by clustering standard errors by both year and country. Allowing

31Specifically, in these estimation samples, the dependent variables for all countries in year t take their values from
some other year t′, which we randomly draw (without replacement) from the 53 years in our estimation sample. Thus,
the outcome variable lnλit in year t is randomly paired with another year’s variables when we estimate β̂0 and β̂1 in
this placebo check.
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both forms of serial correlation has little effect on standard errors. Finally, if instruments are weak,

standard errors from the LIML estimator may be too small (Hansen, Hausman and Newey, 2008).

Column 4 applies the Bekker (1994) adjustment to our benchmark LIML estimates. This only

slightly inflates our standard errors, which is unsurprising given that the various tests in Table 2

do not suggest the instrumental variables are weak.

Controlling for time-varying trade costs Our IV model correctly identifies β0 and β1 when

ENSO conditions influence a country’s domestic share of cereal expenditure only through its effects

on local yields and the global spatial correlation of yields.32 While it is unlikely that ENSO, as a

naturally occurring climatic phenomenon, is affected by economic activity, the exclusion restriction

could be violated if ENSO affects domestic cereal expenditure outside of its influence on cereal

yields. For example, a violation would occur if ENSO directly affected trade costs.

To address this potential violation of the exclusion restriction, Table F.3 augments our bench-

mark model with additional controls designed to capture time-and-country-varying trade costs.

Column 1 replicates our benchmark result. In column 2, we add a proxy for country-year-specific

trade costs by interacting the global annual crude oil price with the country’s average log domestic

share of expenditure over our sample period. Column 3 uses an alternative measure of cross-

sectional trade openness by interacting the global oil price with a country’s centrality, measured as

the average of its inverse distance to every other country weighted by that trading partner’s long-

run average log agricultural output. In both cases, these proxies for time-varying trade costs do not

meaningfully alter our estimates of β0 and β1. Columns 4 and 5 provide more flexible specifications

by interacting year fixed effects with the two cross-sectional measures of trade openness used in

columns 2 and 3. Again, our coefficients of interest are relatively unaffected by the inclusion of

these controls, suggesting that unobserved shocks to trade costs are not correlated with our ENSO-

driven instruments. Cereals may be subject to export restrictions that are imposed in response to

productivity shocks. In column 6, we include a dummy variable that indicates if a country imposed

a new export restriction on cereals that year, using data from the UNCTAD TRAINS database.

Controlling for such export restrictions does not alter our result. ENSO also alters local precipi-

tation. If precipitation is also a determinant of trade costs, there may be an exclusion restriction

violation. In column 7, we include quadratic terms for total annual precipitation for each country

and find that it does not affect our result.

32For example, Hsiang, Meng and Cane (2011) show that warmer ENSO conditions increase the likelihood of civil
conflicts in the tropics over the same period. This relationship, however, need not imply an exclusion-restriction
violation. Suppose ENSO increases civil conflicts in the tropics only through lowered cereal yields. In that setting,
civil conflict would serve as a “bad control” in our IV specification, potentially biasing our coefficients of interest
(see Angrist and Pischke 2009, p. 64-68). Our exclusion-restriction assumption is invalid only if ENSO increases
civil conflicts partially through non-agricultural channels and if civil conflicts affect domestic share of expenditure
by, for example, raising international trade costs relative to internal trade costs. Because the current climate-conflict
literature currently supports both agricultural and non-agricultural channels (Hsiang, Burke and Miguel, 2013),
the inclusion of conflict as a control would not deliver a unique interpretation: it would either jeopardize a valid
identification strategy or suggest that our instrumental-variables strategy is invalid.
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Large economies Our estimate of β̂0 > 0 implies that a positive productivity shock worsens

an economy’s terms of trade. This is at odds with the small-open-economy assumption that the

terms of trade are exogenous to local conditions.33 Of course, some economies must influence world

prices, but since our estimating equation treats each country as an informative observation without

weighting by size, our results suggest that the “typical” economy is not small. To examine this

more explicitly, column 2 of Table F.4 excludes the ten largest economies that account for more

than half of world cereal production from our estimation sample. The resulting estimates of β̂0 and

β̂1 are very similar to our benchmark estimates. This finding is consistent with the idea that trade

costs make all markets “local”, so that no exporter is a price taker.

Dynamic effects Table F.5 estimates dynamic responses that the static model presented in

Section 2 necessarily omits. Column 1 replicates our benchmark contemporaneous-productivity

specification for a sample in which t is restricted to 1962–2012, the sample period that allows for

both lead and lagged yields. Before discussing these results, it is important to note that because

current productivity is affected by ENSOt and ENSOt−1, we would not expect lead productivity,

driven in part by ENSOt, or lagged productivity, driven in part by ENSOt−1, to have zero effect on

current domestic share of expenditure. Rather, the absence of dynamics would produce lead and

lagged effects that are muted compared with the contemporaneous effect.

Improvements since the 1980s in the forecasting of strong ENSO events (Chen et al., 2004;

Shrader, 2023) could allow the domestic share of expenditure to respond to future ENSO-driven

cereal yields. To examine whether agricultural trade anticipates future ENSO events, column 2

tests for the effects of lead log yields, as instrumented by ENSO in years t + 1 and t and local

temperature in year t + 1. Lead effects are much smaller in magnitude than contemporaneous

effects and are not statistically significant.

Past yields might influence the domestic share of expenditure if past productivity affects con-

temporary productivity through intertemporal channels such as depletion of soil nutrients or if

past output is stored to facilitate current consumption. Cereal storage, in particular, has been

shown to facilitate consumption smoothing in many settings (Williams and Wright, 2005; Roberts

and Schlenker, 2013). We address this in two ways. Column 3 examines the effects of lagged log

yields generally, as instrumented by ENSO in years t − 1 and t − 2 and local temperature in year

t − 1. Compared with contemporaneous effects, lagged effects are smaller in magnitude and not

significant at conventional levels. Our measure of domestic expenditure is contemporaneous output

minus exports; this includes potential changes in stored cereal inventories. In column 4, we use a

measure of domestic expenditure that removes changes in cereal inventory using cereal storage data

from the FAO.34 The estimated coefficients are smaller in absolute magnitude than our benchmark

33Prior empirical work, which “typically assumes that countries are small and that the terms of trade are exogenous”
(Debaere and Lee, 2003, 1), has primarily focused on the consequences of external shocks to countries’ commodity
terms of trade. Notable exceptions are Acemoglu and Ventura (2002) and Debaere and Lee (2003), which study the
effects of capital accumulation on the terms of trade.

34This measure is contemporaneous output minus exports minus change in cereal inventory, where the latter is
defined as the difference in stored cereals in year t minus stored cereals in year t − 1. This implicitly assumes that
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estimates; however, they are not statistically different.

The static model of Section 2 assumes that trade is balanced. To verify the plausibility of

this assumption, we have estimated a variant of the regression specification in equation (3) in

which the dependent variable is instead country i’s aggregate goods trade deficit in year t. Neither

instrumented cereal productivity nor its interaction with Moran’s I for cereal productivities have

statistically significant effects on the trade deficit.

Sample split One may wonder if β0 and β1 vary over the sample, particularly given improvements

in ENSO forecasts since the 1980s. Table F.4 reports separate estimates for the two halves of our

estimation sample, 1961–1987 and 1988–2013. While the estimated coefficients for the second half

are smaller in absolute magnitude than those for the first half, these differences are not statistically

significant.

ENSO and local temperature definitions Table F.6 considers alternative definitions of ENSO

and country-level local temperatures. Column 1, panel A reproduces our benchmark results using

the NINO4 measure as our ENSO index and crop-area-weighted country-level temperatures. In

columns 2, 3 and 4, we use the NINO3, NINO34, and NINO12 indices, alternative measures of

ENSO that differ by the spatial area over which average sea-surface temperature is calculated (see

Figure E.2). In panel B, we construct country-level temperatures from pixel-level temperature data

by taking the average across the total area of each country rather than across crop areas.35 Our

results are largely unaffected by these two data-construction choices.

Our identification strategy need not require ENSO per se. Rather, one needs an exogenous

driver of the global spatial correlation of cereal yields that exhibits a sufficiently strong first stage.

In Table F.7, we report estimates produced by replacing g(ENSOt+ENSOt−1) in equations (4) and

(5) with the annual global spatial correlation of temperature, It(Tit).
36 While the point estimates

in Table F.7 do not differ drastically from the corresponding estimates in panel B of Table 2, the

first-stage regressions are generally weaker. This is consistent with Table 1, which shows that It(Tit)

does not predict the global spatial correlation of cereal yields as strongly as ENSO. In short, based

on the strength of the first-stage relationship, we prefer to use ENSO as the source of exogenous

variation in the global spatial correlation of cereal yields rather than the spatial correlation of an

intermediate local weather variable.

all stored cereals are domestically produced. The sample is smaller due to observations with missing storage data.
35Our sample of countries increases slightly when using total-area-weighted temperature compared with using crop-

area-weighted temperature because a handful of small-sized countries have no agricultural activity in the Ramankutty
et al. (2008) dataset.

36When considering temperature-driven only variation, instead of using It(Tit) in equations (4) and (5), one could
alternatively use the vector of country-specific local temperature-predicted productivity to construct a predicted

Moran’s I statistic. Such an approach, however, implicitly assumes that It({l̂nAit(Tit)}) is the correct functional
relationship between local temperature and the global spatial correlation in yields. Our approach, which follows
Kelejian (1971) and Amemiya (1974), allows for more flexible estimation and in general produces a more efficient IV
estimator.
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Domestic expenditure share construction As detailed in Appendix B, we do not observe

cereal prices for all cereal-country-year observations with positive cereal output. Our benchmark

measure of domestic share of expenditure imputes missing cereal-level prices using the average

export-volume-weighted cereal export unit value for that country and year. While this imputation

increases the number of observations in our estimation sample, this procedure could bias our es-

timates if it introduces measurement error into the outcome variable that is correlated with the

instrumented regressors.

Table F.8 presents alternative approximations for the domestic expenditure share. Column 1

reproduces our benchmark result. Columns 2 through 4 employ alternative price imputations.

Column 2 imputes missing export unit values using producer prices.37 Columns 3 and 4 impute

missing cereal prices using the lowest and highest observed export unit values, rather than the

average, for a given country and year. All three alternative imputation methods yield estimates of

β0 and β1 that are statistically indistinguishable from the benchmark estimate in column 1. To see

if our benchmark result is sensitive to the source of trade data, in column 5 we compute domestic

expenditure shares using trade data from Comtrade instead of FAO. Finally, in column 6 we drop

observations where our benchmark measure of log domestic expenditure share is in the bottom and

top 1% of its unconditional distribution. Neither robustness check alters our conclusions.

Comparative advantage within the cereals sector In principle, ENSO might affect not

only the spatial correlation of absolute advantage but also the spatial correlation of comparative

advantage within the cereals sector. In the Eaton and Kortum (2002) model, comparative advantage

is governed by the trade-elasticity parameter. The gravity regression reported in column 2 of

Table C.1 shows that ENSO does not alter the distance elasticity, consistent with an unaltered

trade elasticity. As a more direct test, we estimate a system of seemingly unrelated regressions for

each cereal: the first-stage equations (4) and (5) for aggregate cereal yields and the two analogous

equations for cereal-specific yields. This system allows the error terms to be correlated across

equations. We test whether the cereal-specific coefficients differ from the corresponding aggregate-

cereals coefficients. Table F.9 reports p-values for these tests for each of the eight cereals. The

large p-values on all ENSO coefficients suggest that ENSO does not alter patterns of comparative

advantage within the cereals sector.

4.4 Estimates using terms-of-trade outcomes

Thus far, the outcome variable in our empirical investigation has been the domestic share of expen-

diture, a sufficient statistic for welfare under the modeling assumptions described in Section 2.1.

That theoretical result leverages assumptions that restrict admissible combinations of consumer

preferences, production technologies, and market structure. While widely used, this class of models

may be regarded as narrow.

37See discussion in Appendix B regarding concerns with using FAO’s producer prices.
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We now investigate how the spatial correlation of productivities affects the gain from trade using

an outcome variable that captures welfare changes under much weaker assumptions. We examine

changes in the terms of trade as measured by the product of price changes and the previous period’s

traded quantities. Appendix B describes how we construct this variable using trade data. This

measure identifies whether a country’s terms of trade locally improve or deteriorate under the

relatively weak assumptions required for the revealed-preference argument of Dixit and Norman

(1980).

Since this outcome variable is defined in terms of changes from the previous year, we time-

difference our estimating equations so that we relate changes in the terms of trade to changes in log

productivity and changes in the product of spatial correlation and log productivity. In particular,

we employ first-differenced versions of the second-stage and first-stage equations (3, 4, 5). The

second-stage equation is now

arcsinh(∆ToTit) = ς0(lnAit − lnAit−1) + ς1(It lnAit − It−1 lnAit−1) + ζi + ξt + εit, (6)

where ζi and ξt are country and year fixed effects that correspond to the country-specific trends

and differences in year fixed effects in the levels second-stage equation (3), respectively.38 εit is an

error term that we cluster by year. To facilitate interpretation of ς0 and ς1 as elasticities (as with β0

and β1), we use an inverse hyperbolic sine transformation of ∆ToTit on the left side of equation (6)

(Bellemare and Wichman, 2020).39 The terms-of-trade interpretation of our main empirical results

predicts that ς0 < 0 and ς1 > 0.40 The two first-stage equations are:

lnAit − lnAit−1 = %′11(f(Tit)− f(Tit−1))

+ %′12(f(Tit)g(ENSOt + ENSOt−1)− f(Tit−1)g(ENSOt−1 + ENSOt−2))

+ ζ1i + ξ1t + ϕ1it (7)

It lnAit − It−1 lnAit−1 = %′21(f(Tit)− f(Tit−t))

+ %′22(f(Tit)g(ENSOt + ENSOt−1)− f(Tit−1)g(ENSOt−1 + ENSOt−2))

+ ζ2i + ξ2t + ϕ2it (8)

where ϕ1it and ϕ2it are error terms. Consistent with the benchmark expenditure share specification

in column 4, panel B of Table 2, f(·) is a restricted cubic spline function with four terms and g(·)
is a quadratic function.

38The country fixed effects of equation (3) are eliminated by taking the difference.
39Since changes in the terms of trade can be positive or negative, a log transformation is infeasible.
40Changes in the gains from trade are changes in the terms of trade in neoclassical trade models. A higher export

price reduces the domestic share of expenditure, so ς0 and ς1 have the opposite signs of β0 and β1. The expenditure
response and the terms of trade response need not be similar in magnitude because they differ by (at least) the price
elasticity of demand and shares are bounded above by one. For example, consider the one-sector model with costless
trade, in which the export price response to a productivity improvement is d ln(wi/Ai)

d lnAi
= − 1

ε+1
and the expenditure

response is d lnλii
d lnAi

= ε
ε+1

(1− λii). An improvement in the terms of trade lowers the domestic share of expenditure,
but these magnitudes differ.
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Table 3: Changes in terms of trade
Outcome is asinh(change in terms of trade)

(1) (2)
Cereals Food

∆ lnAit (ς0) -1.886 -1.354
(1.015) (1.273)
[0.069] [0.292]

∆ lnAit × It (ς1) 8.756 6.625
(5.058) (6.643)
[0.089] [0.323]

Cragg-Donald F-stat 10.054 10.054
Stock-Yogo crit. value: 10% max LIML size 3.580 3.580
Kleibergen-Paap F-stat 3.347 3.347
Observations 5747 5747
Notes: This table reports estimates of equation (6). Column 1 examines
change in the terms of trade for cereals. Column 2 examines change in the
terms of trade for all commodities in Standard International Trade Classifi-
cation (SITC) section 0 (food and live animals). Standard errors are reported
in parentheses; p-values in brackets.

Table 3 reports LIML IV estimates of equation (6). Column 1 examines changes in the terms of

trade for cereals. An increase in productivity worsens a country’s terms of trade (ς̂0 < 0), but this

effect is dampened when productivities are more spatially correlated (ς̂1 > 0). This corroborates

the interpretation of our expenditure-share results as reflecting terms-of-trade effects. To broaden

the economic scope, Column 2 examines changes in the terms of trade for all commodities in the

commodity section “food and live animals,” which includes cereals. Consistent with the discussion

of multi-sector models in Appendix Section A.3, these welfare effects are somewhat dampened

when we incorporate a broader set of goods. The standard errors in column 2 are also larger

than in column 1, perhaps unsurprisingly given that the dependent variable uses a broader set of

unit values, which are noisy proxies for prices, and cereal imports are only 25% of food imports

for the average observation. The dampened coefficients and larger standard errors render these

estimates statistically insignificant at conventional thresholds. We therefore find that countries’

terms of trade in cereals respond in the predicted manner to greater spatial correlation of cereal

productivities, but we lack the statistical power to trace these effects through to economy-wide

changes in the terms of trade.41

41Estimates of the coefficients ς0 and ς1 for other 1-digit commodity sections are not statistically significant and
often have the opposite sign of those found for the “food and live animals” section.
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5 Application: Inequality under future climate change

In this section, we demonstrate how to incorporate the role of spatial interdependence via trade into

projections of economic outcomes when the spatial correlation of productivities changes. Recent

reviews of quasi-experimental studies that inform climate-change impact projections emphasize the

need to consider spatial linkages (Dell, Jones and Olken, 2014; Hsiang, 2016; Auffhammer, 2018; De-

schênes and Meng, 2018). In this growing literature, the effect of local temperature on an economic

outcome is first estimated using quasi-experimental variation that implicitly holds temperatures in

other locations fixed. These estimates are then used to compute the local consequences of antic-

ipated future warming and the sum of these projected local impacts is used to quantify climate

change’s global impact. However, by using estimates that hold fixed the spatial structure of tem-

perature, these projections amount to assuming the impacts of a change in the global climate are

equivalent to those of independent local changes. In short, the exercise misses the global nature of

climate change.

To that end, we amend this approach to incorporate changes in the spatial correlation of produc-

tivities due to climate change.42 By allowing the expenditure-productivity relationship to depend

on spatial correlation, this approach incorporates spatial interdependence without imposing the

full structure of quantitative trade models. This strategy is similar to that of Monte, Redding

and Rossi-Hansberg (2018), who use observables to account for heterogeneous local employment

elasticities implied by a quantitative model of commuting flows. Reassuringly, our statistical pro-

jection incorporating spatial effects captures most of the increase in welfare inequality predicted by

a (one-sector) quantitative trade model. More broadly, our statistical approach could be applied

to studying other shifts in productivity.

Because this exercise serves only to highlight the implications of incorporating this particular

mechanism, it omits other potential general-equilibrium effects of climate change. First, these

projections study changes in cereal productivity due to climate-driven changes in local temperatures

over the twenty-first century in isolation. We fix all other variables, such as the spatial pattern

of comparative advantage within cereals, at recent historical values. Thus, we do not take into

account important trends such as technological change. Second, we apply estimates based on

past exogenous annual changes in cereal productivity to future long-term productivity changes

due to climate change. This implies that we omit possible adaptations in anticipation of future

climate change (Deschênes and Greenstone, 2007; Hsiang, 2016). Third, we do not consider other

margins of adjustment. Prior papers that explicitly model specific adjustments, such as migration

(Desmet and Rossi-Hansberg, 2015; Conte et al., 2021; Cruz and Rossi-Hansberg, 2023) or crop

choice (Costinot, Donaldson and Smith, 2016), find they dampen the welfare losses caused by

climate change. If harder-hit locations adjust more along these margins, this will lessen increases in

welfare inequality caused by climate change. This study holds national populations and production

42There is currently no scientific consensus on how ENSO will be affected by anthropogenic climate change (Stocker
et al., 2013). Our projection exercise therefore assumes ENSO is stationary over the twenty-first century and does
not contribute to long-run changes in the global spatial correlation of cereal productivities.
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technologies fixed, thereby focusing on the role that changing spatial correlation plays within the

international trade consequences of climate change. These limitations are standard in this climate-

impacts literature. Our objective is merely to demonstrate how the economic consequences of spatial

correlation, estimated using quasi-experimental variation, can be incorporated into projections of

climate impacts.

We first report climate change’s projected effects on the global variance and spatial correlation

of cereal productivity. We then show how incorporating these changes in the spatial correlation of

productivities alters projections of the cereal contribution to welfare.

5.1 Cereal productivity under climate change

To examine how climate change will affect cereal productivity, we estimate a nonlinear log cereal

yield response function using historical variation in annual temperatures across countries and years.

Specifically, for the period 1961–2013, we estimate:

lnAit = k(Tit) + Ψ′Xit + νit (9)

where k() is a restricted cubic spline function and the benchmark set of controls in Xit include

country fixed effects, year fixed effects, and country-specific quadratic trends. Figure 10 shows the

estimated cubic spline response function, k(), using four temperature spline terms.43 It also shows

two cross-sectional temperature distributions: observed temperatures in 2013 and the forecast

for 2099 under a business-as-usual (Representative Concentration Pathway 8.5) climate scenario

obtained from the Coupled Model Intercomparison Project (CMIP5) multi-model ensemble mean.44

Column 1 of Table F.10 shows that the coefficients of k() shown in Figure 10 are jointly statistically

significant with a productivity-maximizing temperature around 9◦C.45 Table F.10 also indicates

that the predicted optimal temperature is relatively insensitive to the number of knots in the spline

function and to the inclusion of precipitation controls. Next, we combine the estimated coefficients

in equation (9) with local temperature projections under a business-as-usual climate scenario to

project log cereal yields in the 2014–2099 period. All other variables in equation (9) are fixed at

2013 levels (see Appendix D.2 for details).

Climate change alters two important moments of the cross-country cereal productivity distri-

bution. First, the variance of cereal productivity increases. In 2013, 10 of the 12 countries with

temperatures below the global productivity-maximizing temperature had productivities above the

43The local temperature-yield relationship is nearly identical in a model that also controls for the interaction
between local temperature and ENSO, akin to the first-stage equation (4). Using equation (9) provides a method
for incorporating the spatial structure of climate change within the projection approach without requiring quasi-
experimental variation in the spatial correlation of productivities.

44CMIP5 is a coordinated effort by the climate-science community to harmonize model runs across various climate
models. The average climate projection across CMIP5 models is known as the multi-model ensemble mean. CMIP5
was used to inform the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (see Taylor,
Stouffer and Meehl (2012) for details).

45Using similar country-by-year-level data but for the 1983–2009 period, Proctor et al. (2018) find a similar
productivity-maximizing temperature.

31



Figure 10: Estimated temperature response function for log cereal yields
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Figure 11: Projections of changes in one-sector welfare inequality

Notes: The left panel shows the change in the global variance (black line) and Moran’s I (blue line) of log cereal
yields over the twenty-first century under climate change. The right panel shows the percent change in the one-sector
variance of welfare using our statistical model omitting (gray line) and including (red line) changes in the spatial
correlation of log cereal yields, and using the one-sector Armington model described in Section A.2.4 (purple line).
Climate projections are from CMIP5 ensemble mean under a business-as-usual (RCP 8.5) scenario. Appendix D.2
describes the calculations assuming ε = 8.59.
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cross-sectional mean (see Figure E.4).46 As climate change raises temperatures, these more produc-

tive countries will gain further by moving towards the productivity-maximizing temperature shown

in Figure 10. Concurrently nearly all other countries will experience productivity losses as they

move away from the optimal temperature. Because the gains from climate change will be experi-

enced almost exclusively by more productive countries, the cross-country variance of productivity

will rise, as depicted by the black line in the left panel of Figure 11.

Second, as temperatures increase across the planet, the spatial correlation of cereal productivi-

ties increases. This is again due to the non-monotone yield response function shown in Figure 10

and the fact that surface temperatures are generally decreasing in distance to the equator. Absent

climate change, mid-latitude locations experience the productivity-maximizing temperature. Loca-

tions closer to and farther from the equator both generally exhibit lower yields. As climate change

increases temperatures, latitudes closer to the poles will experience the productivity-maximizing

temperature, and less productive countries will be more bunched around the equator. This bifur-

cation of global agriculture into high-productivity poles and a low-productivity band around the

equator would increase the spatial correlation of cereal productivity.47 The resulting increase in

Moran’s I for cereal productivity under climate change is depicted by the blue series in the left

panel of Figure 11.48

5.2 Changes in spatial structure and projected outcomes

Greater spatial correlation of cereal productivity due to climate change matters for global inequality

because it alters patterns of trade in a way that would make the distribution of gains from trade

more unequal in the Arkolakis, Costinot and Rodŕıguez-Clare (2012) class of one-sector models.49

To demonstrate this, we combine projected local cereal productivity under climate change with

the estimates of β̂0 and β̂1 from Section 4 to project future domestic shares of expenditure via

equation (3) and welfare variance via equation (2) (see Appendix D.2 for details). We consider two

statistical projections with different terms-of-trade effects but the same increase in the variance of

productivity as depicted by the black series in the right panel of Figure 11.50 In the first statistical

46Figure E.4 shows that the unconditional relationship between log productivity and temperature is very similar
to the conditional relationship depicted in Figure 10, k(Tit). Thus, we can describe how climate change alters the
variance and spatial correlation of productivities in terms of the nonlinear shape of k(Tit), even though productivity
incorporates other determinants contained in controls Ψ′Xit and residual νit from equation (9).

47Additionally, the country-specific shift in temperature due to climate change is not spatially uniform. Because
of surface albedo changes due to polar ice melt, there will be greater warming near the poles. However, this latitude-
dependent gradient is relatively small compared to the average global temperature change and thus plays a second-
order role in determining changes in the spatial correlation of productivities. For example, the projected temperature
change over the twenty-first century for Gabon, the country located closest to the equator, is 3.4◦C. For Finland, the
country located closest to the north pole, the projected temperature change is 2.9◦C.

48From 2013 to 2099, Moran’s I for cereal productivity increases by 0.01, as shown in the left panel of Figure 11.
This is comparable to the 0.011 increase in Moran’s I for cereal productivity in the two years following a historical
1-degree ENSO event, as estimated in column 1 of Table 1.

49With multiple sectors, there are additional margins of adjustment that dampen the consequences of spatial
correlation of productivities in one sector for overall welfare inequality. See Appendix A.3.

50In autarky, the variance of welfare would be proportionate to the variance of productivity. Since a productivity
increase is associated with worse terms of trade, an increase in the variance of productivity causes a smaller increase
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projection, we fix the spatial correlation of temperature-predicted cereal productivities to its 2013

value (equation D.8). In the second statistical projection, we allow climate change to increase the

spatial correlation of productivities (equation D.9), as depicted by the blue series in the left panel

of Figure 11. In both cases we set the trade elasticity for agriculture to ε = 8.59 following Caliendo

and Parro (2015).

The projected change in the cereal contribution to the variance of welfare over the twenty-

first century (see equation D.10) is shown in the right panel of Figure 11. The gray line shows

the projection that omits changes in spatial correlation and the red line shows the projection that

include such changes. Omitting changes in spatial correlation, the projected increase in the variance

of cereal productivity generates a projected increase in the variance of welfare. The projection

that incorporates increases in the spatial correlation of cereal productivity due to climate change

predicts a 20% greater increase in welfare inequality over 2013–2099 than the projection that holds

spatial correlation fixed (see equation D.11). For comparison, we also produce a projection using

the quantitative trade model detailed in Section A.2.4. We find that 91% of the increase in the

variance of welfare between 2013–2099 projected by the (one-sector) quantitative trade model can

be explained by our statistical projection that incorporates changes in spatial correlation. Only

76% of the projected increase in the variance of welfare from the trade model can be explained by

our statistical projection that omits changes in spatial correlation.

Figure 12: Differences in one-sector welfare due to spatial correlation

Notes: Map shows the difference in projected country-level one-sector welfare change over 2013–2099 between
projections that include and omit changes in spatial correlation (see equation D.12). Climate projections from
CMIP5 ensemble mean under a business-as-usual (RCP 8.5) scenario. Appendix D.2 describes calculations
assuming ε = 8.59.

How do the projections differ across countries? Figure 12 maps the difference between the

two projections by 2099 (see equation D.12). Including an increase in the spatial correlation of

productivities causes the gains from trade to be lower in less productive countries and higher in

more productive countries than in a projection that holds spatial correlation fixed. In particular,

in the variance of welfare when there is international trade.
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Figure 13: Difference in projected outcomes due to spatial correlation vs. yield changes
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that include and omit changes in spatial correlation (see equation D.12 and Figure 12) plotted against change in
log cereal yields over 2013–2099 under climate change. Countries are color-coded by continent. See Figure E.5
for the same plot with country identifiers. Appendix D.2 describes these calculations assuming ε = 8.59.

Figure 12 shows that most countries in Africa, and a few in Asia and South America have lower

gains from trade in the projection that incorporates changes in spatial correlation. This is because

the relatively high local temperatures that drive yield losses in these countries are compounded by

similar temperatures simultaneously experienced by neighboring countries. In the simplest terms,

a key feature of climate change is that it makes Ethiopia and Kenya less productive at the same

time, lowering the gains from trade compared to a calculation that assumes each country warms

independently. By the same logic, parts of Europe and North American have higher gains from trade

when the projection includes increases in spatial correlation. The relatively milder temperatures

experienced by these countries are accompanied by similar temperatures over neighboring locations.

Figure 13 depicts climate-change forecasts for each country in terms of the predicted change in

cereal productivity and the difference in projected one-sector welfare from omitting the change in

spatial correlation shown in Figure 12 on the vertical axis. The vast majority of countries suffer a

decrease in cereal productivity as a result of increased temperature. As in Figure 12, the strongest

contrast in Figure 13 is between outcomes for African and European economies. While there is
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substantial heterogeneity in the productivity declines across countries within each continent, most

economies in Africa, and a few in South America and Asia, experience productivity losses that would

be considerably amplified by changes in spatial correlation. By contrast, most European economies

have reduced projected welfare losses when the change in spatial correlation is incorporated. For the

few economies with increased productivity under climate change, the differences across projections

are close to zero.

6 Conclusion

This paper studies how the spatial structure of the global productivity distribution shapes the

distribution of welfare across countries. In particular, we use a benchmark trade model with

distance-related trade costs to show that, all else equal, greater spatial correlation of productivities

can increase welfare inequality. The increase in spatial correlation causes high-productivity loca-

tions to enjoy larger gains from trade than they would if productivity were spatially uncorrelated.

In settings in which welfare differences are arbitraged away by mobile factors of production, greater

spatial correlation of productivities would make population density, rather than welfare per capita,

more unequal across locations.51

To investigate the empirical relationship between the spatial correlation of productivities and

the distribution of gains from trade, we exploit a global natural experiment. Specifically, we use the

El Niño-Southern Oscillation, a naturally occurring global climatic phenomenon, which exogenously

alters the annual spatial correlation of cereal productivity around the planet. We examine how the

spatial correlation of cereal productivity governs the response of the domestic share of expenditure,

a sufficient statistic for the gains from trade in a broad class of trade models, to local productivity.

Using data from the past five decades of cereal trade, we find that high-productivity countries

enjoy larger gains from trade when cereal productivities are more spatially correlated, as predicted.

More broadly, our empirical approach advances the use of causal-inference techniques to estimate

general-equilibrium predictions.

Our application to climate impact projections shows that incorporating changes in spatial cor-

relation predicts greater global consumption inequality. These augmented projections capture 91%

of the increase in consumption inequality predicted by a quantitative trade model. This approach

provides researchers means of capturing indirect effects of climate change without employing a full

structural model.

This interplay between the spatial structure of productivity and welfare inequality is potentially

important in many other domains. Many determinants of productivity – such as demographics,

political institutions, and natural endowments – tend to exhibit substantial spatial correlation.

For natural endowments in particular, spatial correlation may change following the relocation of

existing endowments (e.g., migrating wildlife stocks), the discovery of new uses for them (e.g.,

solar and wind availability), or the discovery of new endowments (e.g., fossil fuel deposits). This

51Appendix A.5 proves that this is the case for a symmetric geography with four locations.
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paper’s estimates might be used to analyze the inequality consequences of changes in other economic

features that do not experience regularly recurring shifts in their global spatial correlation.
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Appendix – For Online Publication

A Theory appendix

A.1 General economic environment

This appendix section provides details of the perfect-competition results presented in Section 2 and

extends them to the Krugman (1980) model of monopolistic competition.

Preferences. Individuals in country j have constant-elasticity-of-substitution preferences over

goods indexed by ω. The accompanying price index is

Pj =

(∫
ω
pj(ω)1−σdω

)1/(1−σ)

.

A.1.1 Perfect-competition microfoundations

Production. Productivity Aj has a model-specific microeconomic interpretation. In the Arming-

ton model, each country i produces a distinct variety using a linear production technology such that

one unit of labor yields Ai units of output. Under perfect competition, its price is wi/Ai and thus

the Dixit-Stigliz price index is Pj =
(∑N

i=1 (wiτij/Ai)
1−σ
)1/(1−σ)

. In the Eaton and Kortum (2002)

model, there is a continuum of varieties, and each country’s efficiency in producing them follows a

Fréchet distribution with location parameter Ti and dispersion parameter ϑ. The equivalence with

the Armington model requires Ti = Aεi .

Gravity equation. Written in terms of expenditure shares, the gravity equation is

λij =
Xij

Xj
=

χi (τijwi)
−ε∑N

l=1 χl (τljwl)
−ε =

χi (τijwi)
−ε

Φj
, (A.1)

where χi is a function of Ai and other structural parameters that are not trade costs, ε is the

“trade elasticity”, and Φj ≡
∑N

l=1 χl (τljwl)
−ε is the “inward multilateral resistance” term (Head

and Mayer, 2014). Φj is a (decreasing) transformation of j’s price index that summarizes consumers’

access to goods from every source. In the Armington model, ε = σ− 1 and χi = Aεi . In the Eaton-

Kortum model without intermediate inputs, ε = ϑ and χi = Ti. Thus, the equilibrium trade flows

associated with a productivity distribution {Ai}i and trade elasticity ε in the Armington model are

equal to the equilibrium trade flows for an Eaton-Kortum model in which efficiency distributions

have location parameters Ti = Aεi . As a result, we can replace χi in the gravity equation by Aεi , as

done in the main text.

Welfare. Equation (1) is an immediate consequence of the main result in Arkolakis, Costinot

and Rodŕıguez-Clare (2012). They show that, in a broad class of models, the gains from trade

relative to autarky are equal to −1
ε lnλii. In our theoretical environment, autarky welfare is equal

to lnAi + γ, as implied by equation (1). γ is a function of structural parameters. In the Arm-

ington model with symmetric preferences, γ is zero. In the Eaton and Kortum (2002) model,
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γ =
[
Γ
(
1 + 1−σ

θ

)]1/(1−σ)
, where Γ is the gamma function.

Spatial correlation and welfare. To examine the role of spatial correlation, consider two

productivity distributions, a correlated state c and an uncorrelated state u, with the same uncon-

ditional variance of productivities, var(lnAci ) = var(lnAui ). The difference in welfare dispersion

between these states is

var (ln (Cci /Li))− var (ln (Cui /Li)) = −2

ε
[cov (lnAci , lnλ

c
ii)− cov (lnAui , lnλ

u
ii)]

+
1

ε2
[var (lnλcii)− var (lnλuii)] . (A.2)

The latter term should make only a second-order contribution to the difference in welfare disper-

sion, since 1
ε2

is an order of magnitude smaller than 2
ε for empirically relevant values of the trade

elasticity.52

A.1.2 Krugman (1980) microfoundations

We now discuss the case of monopolistic competition with homogeneous firms, in which the measure

of varieties available in equilibrium is endogenously determined. Consider a many-country version

of the Krugman (1980) model in which costs may vary across countries. Denote the equilibrium

number of homogeneous firms producing in country j by nj .

Production function. Homogeneous firms produce differentiated varieties under monopolistic

competition. Denote their fixed costs by fj and constant marginal costs by cj . Productivity Aj

may be a shifter of fixed costs or marginal costs for all firms.

Gravity equation. In the free-entry equilibrium, the gravity equation (A.1) holds with ε =

σ − 1, ni = Li/ (σfi), and χi = nic
−ε
i .

Welfare. In this setting, real per capita consumption is

ln (Ci/Li) =
1

ε
lnni − ln ci + ln

(
σ − 1

σ

)
− 1

ε
lnλii

If population size Li and fixed costs fi are country-invariant (ni = n ∀j) and we interpret

productivity as shifting marginal costs, Ai = c−1
i , then this is equivalent to equation (1) with

γ = 1
ε lnn + ln

(
σ−1
σ

)
. If population size Li and marginal costs ci are country-invariant and we

interpret productivity as shifting fixed costs, Ai = f
−1/ε
i , then this is equivalent to equation (1)

with γ = 1
ε ln (L/σ) + ln

(
σ−1
σc

)
.

In the case of countries with heterogeneous population sizes, equation (1) must be extended to

52Typical estimates of the aggregate trade elasticity are between 4 and 8. Caliendo and Parro (2015) estimate
that the trade elasticity for agricultural goods is between 8 and 17. Provided that var (lnλcii) − var (lnλuii) is the
same order of magnitude or smaller than cov (lnAci , lnλ

c
ii) − cov (lnAui , lnλ

u
ii), this means that the second term

on the right side of equation (A.2) is an order of magnitude smaller than the first term. Appendix A.1.3 shows
that cov (lnAci , lnλ

c
ii)− cov (lnAui , lnλ

u
ii) is the same order of magnitude as var (lnλcii)−var (lnλuii) if trade costs are

symmetric (τij = τji) and countries equal sized (Li = L ∀i). This is also overwhelmingly true in numerical simulations
featuring countries of different sizes reported in Appendix Figure E.1. Nonetheless, our welfare calculations, laid out
in Appendix D, incorporate 1

ε2
[var (lnλcii)− var (lnλuii)].
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replace γ with a location-specific γi that depends on structural parameters other than productivity.

For example, if productivity shifts marginal costs, Ai = c−1
i , then we obtain

ln

(
Ci
Li

)
= lnAi + γi −

1

ε
lnλii, (1′)

where γi = 1
ε lnni + ln

(
σ−1
σ

)
.

Spatial correlation and welfare. If we assume that cov(lnAui , γi) = cov(lnAci , γi), we obtain

an extension of equation (A.2):

var (lnCci /Li)− var (lnCui /Li) = −2

ε
[cov (lnAci , lnλ

c
ii)− cov (lnAui , lnλ

u
ii)]

− 2

ε
[cov (γi, lnλ

c
ii)− cov (γi, lnλ

u
ii)]

+
1

ε2
[var (lnλcii)− var (lnλuii)] . (A.2′)

Similar results hold for the Melitz (2003) model of heterogeneous firms under monopolistic

competition when the productivity distribution of country j is a Pareto distribution with location

parameter Aj .

A.1.3 The case of symmetric trade costs

The case of symmetric trade costs (τij = τji ∀i, j) is illuminating because it allows us to define the

equilibrium in terms of one vector of endogenous outcomes (Φi) and relevant because it connects

more closely with measures of spatial correlation, which use symmetric spatial weights. Starting

from the equilibrium system of equations and using the assumption of symmetric trade costs:

Yi = wiLi =
∑
j

(
wi
Ai

)−ε
τ−εij

wjLj
Φj

=

(
wi
Ai

)−ε
Ωi

⇒ wi
Ai

=

(
Ωi

AiLi

) 1
ε+1

⇒ Φi =
∑
j

τ−εji

(
wj
Aj

)−ε
=
∑
j

τ−εji (AjLj/Ωj)
ε
ε+1

=
∑
j

τ−εji (AjLj/Φj)
ε
ε+1

The last equality exploits the fact that we can normalize incomes such that Φi = Ωi when trade

is balanced and τ−εij is symmetric, as established in Anderson and van Wincoop (2003) and Head

and Mayer (2014).

Combining λii = (wi/Ai)
−ε

Φi
, the above expression for wi/Ai, and the assumption of symmetric
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trade costs yields the result that

λii =
(Ωi/(AiLi))

−ε
ε+1

Φi
= (AiLi)

ε
ε+1 Φ

− 2ε+1
ε+1

i .

Thus, in the case in which Li = L ∀i, var(lnλii) = ε
ε+1cov(lnAi, lnλii) − 1+2ε

1+ε cov(ln Φi, lnλii).

Comparing these outcomes for productivity distributions Ac and Au in the case in which Li = L ∀i,

var(lnλcii)− var(lnλuii) =
ε

ε+ 1

[
cov(lnAci , lnλ

c
ii)− cov(lnAui , lnλ

u
ii)
]

− 1 + 2ε

1 + ε

[
cov(ln Φc

i , lnλ
c
ii)− cov(ln Φu

i , lnλ
u
ii)
]
.

Heuristically, the latter term is of smaller magnitude, since Φi is a price-index term that is a

weighted sum of all other countries’ prices. Thus, var (lnλcii) − var (lnλuii) is the same order of

magnitude as cov (lnAci , lnλ
c
ii)− cov (lnAui , lnλ

u
ii).

A.2 Spatial correlation and the covariance of productivity and gains from trade

This appendix section theoretically illustrates how the spatial correlation of productivities may

affect welfare inequality by altering the covariance between productivity and gains from trade.

We do so by a series of steps. First, we use a local approximation to show that the change in

the covariance of productivities and domestic shares of expenditure resulting from an infinitesimal

change in countries’ productivities depends on the change in a term akin to the Moran’s I spatial-

correlation statistic for productivity. Second, we allow for large productivity changes by proving

our theoretical prediction in a symmetric four-country model and showing that it holds in numerical

simulations with more countries. Third, we examine how to identify this ceteris paribus prediction in

asymmetric environments in which countries differ by other, potentially confounding, determinants

of equilibrium trade flows, as well as allowing for realistic geography, productivities and trade

costs. These simulations motivate our use of panel data in our empirical investigation. Finally, we

show implications for our predictions for trade models with multiple sectors, spatial correlation in

comparative advantage, and mobile labor.

A.2.1 A local approximation

A partial-equilibrium local approximation suggests that an increase in the spatial correlation of

productivities should decrease the covariance of productivities and domestic shares of expenditure

and that Moran’s I captures part of this spatial interdependence. A general-equilibrium local

approximation that exploits the assumption of symmetric trade costs (τij = τji) delivers a very

similar result, as shown below. We can regress lnλii on the interaction of log productivity and

Moran’s I to estimate this relationship.

We first consider the effect of an infinitesimal change in countries’ productivities on the co-

variance of productivities and domestic shares of expenditure. Let {d lnAi}i denote a set of local
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productivity changes that do not alter the distribution’s variance (dvar(lnAi) = 0). The resulting

change in cov(lnλii, lnAi) can be written as the sum of four terms:

dcov(lnλii, lnAi) = εdvar(lnAi)︸ ︷︷ ︸
=0

−ε cov(d lnwi, lnAi)︸ ︷︷ ︸
=0 by P.E.

− cov(d ln Φi, lnAi)︸ ︷︷ ︸
≈dI by P.E.

+cov(lnλii, d lnAi)

(A.3)

The first term is zero by the assumption that the distribution’s variance is unchanged. If we

take a partial-equilibrium perspective by assuming d lnwi = 0 ∀i, the second term is also zero.

Furthermore, in partial equilibrium the third term is closely related to the spatial correlation of

productivities. The following subsection shows that, if wages are unchanged, cov(d ln Φi, lnAi)

is akin to the change in Moran’s I if we set spatial weights equal to initial expenditure shares

ωji = λji for j 6= i.53 The fourth term, while not taking the form of a change in Moran’s I, is also

intuitively linked to spatial correlation. Conditional on Ai and Li, λii will be lower in countries

where neighboring countries are larger and more productive. An increase in spatial correlation will

tend to raise productivity in countries with more productive neighbors, so the fourth term should

also be negative when spatial correlation increases.

Partial-equilibrium case

Using the facts that lnλii = ε lnAi− ε lnwi− ln Φi and dcov(yi, xi) = cov(dyi, xi) + cov(yi, dxi), we

can derive the following

dcov(lnλii, lnAi) = εdcov(lnAi, lnAi)− εdcov(lnwi, lnAi)− dcov(ln Φi, lnAi)

= εdvar(lnAi)− εcov(d lnwi, lnAi)− εcov(lnwi,d lnAi)− cov(d ln Φi, lnAi)− cov(ln Φi, d lnAi)

= εdvar(lnAi)︸ ︷︷ ︸
=0

−ε cov(d lnwi, lnAi)︸ ︷︷ ︸
=0 by P.E.

− cov(d ln Φi, lnAi)︸ ︷︷ ︸
≈dI by P.E.

− cov(ε lnwi + ln Φi,d lnAi)︸ ︷︷ ︸
=cov(lnλii,d lnAi)

,

which yields equation (A.3). The first two terms are zero by the assumptions of unchanged variance

and partial equilibrium, respectively. The fourth term is equivalent to cov(lnλii, d lnAi) because

lnλii = ε lnAi− ε lnwi− ln Φi and dvar(lnAi) = 2cov(lnAi, d lnAi) = 0. We proceed to show why

the third term is related to the change in Moran’s I, dI.

Starting from the definition of Moran’s I for productivity, we can write changes in Moran’s I

53Moran’s I is a commonly used measure of global spatial correlation that can be computed for any geography
endowed with a distance metric. It takes values between -1 and 1. Moran’s I for productivity lnAi is defined by

I ≡ N∑
i

∑
j ωij

∑
i

∑
j ωij

(
lnAi − lnA

) (
lnAj − lnA

)∑
`

(
lnA` − lnA

)2 ,

where N is the number of countries, ωij = ωji is a symmetric spatial weight, and lnA is the cross-sectional average.
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as a covariance of lnAi and a weighted sum of d lnAj .

I ≡ N∑
i

∑
j 6=i ωij

1∑
`

(
lnA` − lnA

)2︸ ︷︷ ︸
≡Ω

∑
i

∑
j 6=i

ωij
(
lnAi − lnA

) (
lnAj − lnA

)

dI = Ω
∑
i

∑
j 6=i

ωij
[
d lnAi

(
lnAj − lnA

)
+
(
lnAi − lnA

)
d lnAj

]
by dvar(lnA) = 0

= 2Ω
∑
i

∑
j 6=i

ωij
(
lnAj − lnA

)
d lnAi by ωij = ωji ∀i, j

= 2Ωcov

∑
j

ωjid lnAj , lnAi

 by ωii = 0 ∀i

The third term in equation (A.3) evaluated at fixed wages is a covariance of lnAi and a weighted

sum of d lnAj .

Φi =
∑
j

Aεjτ
−ε
ji w

−ε
j

d ln Φi =
1

Φi

∑
j

εAεjτ
−ε
ji w

−ε
j

(
1

Aj
dAj −

1

wj
dwj

)
= ε

∑
j

λji (d lnAj − d lnwj)

cov(d ln Φ, lnAi|d lnwi=0 ∀i) = εcov

∑
j

λjid lnAj , lnAi


As a result, this covariance would be proportionate to the expression for dI above if ωji = λji. It is

not identical to the change in Moran’s I because ωii = 0 and while spatial weights are symmetric,

ωji = ωij , the initial equilibrium’s expenditures shares need not be.

General-equilibrium case with symmetric trade costs

Assume that τij = τji ∀i, j. Using the two previously noted facts that dcov(yi, xi) = cov(dyi, xi) +

cov(yi, dxi), and symmetric trade costs imply λii = (AiLi)
ε
ε+1 Φ

− 2ε+1
ε+1

i , we obtain the following

expression for dcov(lnλii, lnAi):

dcov(lnλii, lnAi) = cov(d lnλii, lnAi) + cov(lnλii, d lnAi)

=
ε

ε+ 1

1

2
dvar(lnAi)︸ ︷︷ ︸

=0

+ cov(d lnLi, lnAi)︸ ︷︷ ︸
=0

− 2ε+ 1

ε+ 1
cov(d ln Φi, lnAi) + cov(lnλii,d lnAi)
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Section A.1.3 showed that when τij = τji ∀i, j, we can characterize equilibria in terms of {Φi}i and

exogenous variables. We therefore obtain an expression for d ln Φi.

Φi =
∑
j

τ−εji A
ε
jw
−ε
j =

∑
j

τ−εji (AjLj/Φj)
ε
ε+1

d ln Φi =
1

Φi

ε

ε+ 1

∑
j

τ−εji (AjLj/Φj)
ε
ε+1

(
1

Aj
dAj −

1

Φj
dΦj

)
=

ε

ε+ 1

∑
j

λji (d lnAj − d ln Φj) (A.4)

To establish the connection between cov(d ln Φi, lnAi) and the change in Moran’s I, we switch

to matrix notation. Define the following matrices:

ln Ã ≡
{

lnAi − lnA
}
i

n-element vector

d ln A ≡ {d lnAi}i n-element vector

W ≡ {ωij}i,j n-by-n matrix

Using these matrices, we can write the change in Moran’s I as

dI = 2Ω
∑
i

∑
j

ωij
(
lnAj − lnA

)
d lnAi = 2Ω · ln Ã′Wd ln A.

If we define B as the matrix whose ij element is ε
ε+1λji, then equation (A.4) can be written as

d ln Φ = B (d ln A− d ln Φ)

⇒ d ln Φ = (I + B)−1 Bd ln A,

where the inverse exists because I + B is diagonal-dominant. As a result

cov(lnAi, d ln Φi) =
1

N

[
ln Ã′ (I + B)−1 Bd ln A

]
.

This covariance would be proportionate to the change in the Moran’s I spatial-correlation statistic

for {lnAi}i if we were to use the spatial weight matrix W = (I + B)−1 B =
∑∞

n=1 (−1)n+1 Bn.

That is, if the spatial weights were equal to the infinite sum of expenditure-share interactions that

summarize the entire trading network, the change in Moran’s I would capture cov(d ln Φi, lnAi).

The first term in this infinite sum, B, is the “direct effect” in which productivity changes are

simply weighted by their expenditure share. Since the gravity equation relates expenditure shares

to bilateral distances, we thus expect the change in spatial correlation to affect dcov(lnλii, lnAi).
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Figure A.1: Four-country example: Productivity distributions

High Low

HighLow

“Alternating” arrangement

High High

LowLow

“Regional” arrangement

A.2.2 Four-country case

A symmetric four-country model is the simplest possible environment in which one can demonstrate

our result for large productivity changes. Consider four countries of equal size evenly spaced on

a symmetric geography. Each country is “near” two neighbors and farther from the remaining

country. Thus, the trade cost matrix is

τ ≡


1 d1 d2 d1

d1 1 d1 d2

d2 d1 1 d1

d1 d2 d1 1

 , 1 < d1 < d2 < d2
1 (A.5)

where the trade costs d2 > d1, a mnemonic for distance, obey the triangle inequality: d2 < d2
1.

For these four countries, consider a mirror-image productivity distribution in which two coun-

tries have high productivity and the other two countries have low productivity. These productivities

might alternate – high, low, high, low – or the world may be divided into a high-productivity region

and a low-productivity region. Figure A.1 depicts the two possible spatial arrangements. What are

the consequences for trade and welfare?

Proposition 1 shows that the “regional” arrangement of productivities exhibits greater spatial

correlation, as measured by Moran’s I. As a result, the covariance of productivity and the domestic

share of expenditure is lower when productivities are distributed this way. That makes the variance

of welfare across countries greater. The proof of Proposition 1 follows below.

Proposition 1 (Four-country case). Consider an economy in which N = 4, Li = L ∀i, ε ≥ 1,

and trade costs τij are given by condition (A.5). Comparing the productivity distributions Ac =

(ã, ã, 1, 1) and Au = (ã, 1, ã, 1), where ã > 1,

� Ac is more spatially correlated than Au in the sense that the value of Moran’s I for lnAc is

greater for any spatial weight matrix that is a one-to-one mapping between ωij and τij and

assigns a higher weight to the pairs with τij = d1 than pairs with τij = d2.

� Equilibrium income inequality, given by Y1/Y4, is greater for the more spatially correlated pro-

ductivity distribution, Ac. Equivalently, the more productive economies’ equilibrium double-
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factoral terms of trade are greater for the more spatially correlated productivity distribution.

� The covariance of productivity and the domestic share of expenditure is lower for the more

spatially correlated productivity distribution: cov(lnAci , lnλ
c
ii) < cov(lnAui , lnλ

u
ii).

� The variance of welfare across countries is greater for the more spatially correlated productivity

distribution: var(ln(Cci /L)) > var(ln(Cui /L)).

This four-country case illustrates our prediction linking the spatial correlation of productivities

to welfare inequality.

Ac is more spatially correlated than Au

Proof. Recall that Moran’s I is given by

I(lnA,W ) =
N∑

i

∑
j ωij

∑
i

(
lnAi − lnA

)∑
j ωij

(
lnAj − lnA

)∑
i

(
lnAi − lnA

)2 ,

where ωij are spatial weights. Define the spatial weight matrix

{ωij} =


ω0 ω1 ω2 ω1

ω1 ω0 ω1 ω2

ω2 ω1 ω0 ω1

ω1 ω2 ω1 ω0

 .

Thus, there is a one-to-one mapping between ωij and τij . ω1 is the spatial weight associated with

trade cost d1; ω2 is the spatial weight associated with trade cost d2.

The average log productivity is given by lnA = 1
2 ln ã. For the correlated state, lnAc =

(ln ã, ln ã, 0, 0), so the demeaned log productivity vector is equal to l̂nAc = (1
2 ln ã, 1

2 ln ã,−1
2 ln ã,−1

2 ln ã).

For the uncorrelated state, lnAu = (ln ã, 0, ln ã, 0) and l̂nAu = (1
2 ln ã,−1

2 ln ã, 1
2 ln ã,−1

2 ln ã).

lnAc is more spatially correlated than lnAu if and only if I(lnAc,W ) > I(lnAu,W ) ⇐⇒∑
i l̂nAci

∑
j ωij l̂nA

c
j >

∑
i l̂nAui

∑
j ωij l̂nA

u
j .

The relevant terms are as follows:

∑
j

ωij l̂nAcj =

{
1
2 (ω0 − ω2) ln ã for i = 1, 2

−1
2 (ω0 − ω2) ln ã for i = 3, 4∑

i

l̂nAci
∑
j

ωij l̂nAcj = (ω0 − ω2) (ln ã)2

∑
j

ωij l̂nAuj =

{
1
2 (ω0 − 2ω1 + ω2) ln ã for i = 1, 3

−1
2 (ω0 − 2ω1 + ω2) ln ã for i = 2, 4∑

i

l̂nAui
∑
j

ωij l̂nAuj = (ω0 − 2ω1 + ω2) (ln ã)2

I(lnAc,W ) > I(lnAu,W ) ⇐⇒ ω0 − ω2 > ω0 − 2ω1 + ω2 ⇐⇒ ω1 > ω2.
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Equilibrium for the correlated state: Ac = (ã, ã, 1, 1)

By symmetry, the equilibrium incomes and market access of countries 1 and 2 are identical, Y1 = Y2

and Φ1 = Φ2. Similarly, countries 3 and 4 have identical outcomes: Y3 = Y4 and Φ3 = Φ4. As

a result, the equilibrium incomes that solve Yi =
∑N

j=1 λijYj can without loss of generality be

characterized by the scalar x ≡ Y1/Y4, the relative income levels.

Y1 = λ11Y1 + λ12Y2 + λ13Y3 + λ14Y4 ⇒ x =
λ13 + λ14

1− λ11 − λ12

Equilibrium expenditure shares can be expressed as λij = AεiY
−ε
i τ−εij /Φj . Thus λijA

−ε
i Y ε

i =

τ−εij /Φj and

x =
τ−ε13 /Φ3 + τ−ε14 /Φ4

ã−εY ε
1 − τ

−ε
11 /Φ1 − τ−ε12 /Φ2

.

Using the facts that Φ1 = Φ2 = Y −ε1 ãε(1 + d−ε1 ) + Y −ε3 (d−ε2 + d−ε1 ) and Φ3 = Φ4 = Y −ε1 ãε(d−ε2 +

d−ε1 ) +Y −ε3 (1 +d−ε1 ), it can be shown that the equilibrium value of x is the solution to the equation

x2ε+1 +
d−ε2 + d−ε1

1 + d−ε1︸ ︷︷ ︸
≡rc

ãε
(
xε+1 − xε

)
− ã2ε = 0. (A.6)

Equilibrium for the uncorrelated state: Au = (ã, 1, ã, 1)

Analogous to the correlated state, this case can be solved by exploiting the facts that countries

1 and 3 have identical outcomes, Y1 = Y3 and Φ1 = Φ3, and countries 2 and 4 have identical

outcomes: Y2 = Y4 and Φ2 = Φ4. The equation that characterizes equilibrium relative income x is

x2ε+1 +
d−ε1 + d−ε1

1 + d−ε2︸ ︷︷ ︸
≡ru

ãε
(
xε+1 − xε

)
− ã2ε = 0. (A.7)

Note that 0 < rc < ru < 1 since d2
1 > d2 > d1 > 1.

Comparing equilibria

Equations (A.6) and (A.7) show that relative income in each equilibrium is given by the zeros of

the following generalized polynomial

R(x; r) = x2ε+1 + rãε
(
xε+1 − xε

)
− ã2ε

when r > 0 is evaluated at rc and ru, respectively. By Descartes’ rule of signs, R(x; r) has exactly

one real positive zero (for a given value of r) (Jameson, 2006).54 Denote this zero of R(x; r) by

x∗(r).

54It also has either 0 or 2 negative zeros that are obviously not of interest.
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We prove that x∗(r) is decreasing by contradiction. Let r1 < r2 and denote by x∗1 and x∗2
their respective unique positive zeros. Suppose that x∗1 < x∗2. Consider the function F (x) =

R(x; r2)−R(x; r1) = (r2− r1)ãεxε(x−1). It is evident that F (0) = F (1) = 0, F (x) < 0 ∀x ∈ (0, 1),

and F (x) > 0 ∀x > 1. When evaluated at x∗1, F (x∗1) = R(x∗1; r2) − R(x∗1; r1) = R(x∗1; r2), since x∗1
is a zero of R(x; r1).

Note that R(x; r) is continuous in x and that R(0; r) < 0. Therefore, R(x; r2) < 0 ∀x ∈ (0, x∗2).

Since x∗1 ∈ (0, x∗2) by assumption, F (x∗1) = R(x∗1; r2) < 0. Since F (x) > 0 ∀x > 1, we conclude that

x∗1 ∈ (0, 1). We also know that ∀x > x∗1, R(x; r1) > 0 since R(x∗1; r1) = 0 and limx→+∞R(x; r1) =

+∞. Together, these results imply that R(1; r1) > 0. Yet, R(1; r1) = 1− ã2ε < 0 as ã > 1. Thus,

we have a contradiction. We conclude that r1 < r2 ⇒ x∗1 > x∗2.

Denote the equilibrium relative incomes by xc and xu. Because ru > rc, xu < xc. The ratio of

equilibrium incomes is greater in the correlated case. Since the countries are of equal size, the ratio

of equilibrium incomes x is also the more productive economy’s “double-factoral terms of trade”.

Thus, the more productive economies’ double-factoral terms of trade are greater in the correlated

case. Spatial correlation matters because there are spatial linkages: with costless trade, relative

income would be invariant to spatial correlation (d2 = d1 = 1 =⇒ rc = ru =⇒ xc = xu).

cov(lnAi, lnλii) is lower in the spatially correlated case

Proof. Equilibrium domestic shares of expenditure can be expressed as λii = AεiY
−ε
i /Φi. For the

correlated state Ac, Φ1 = Φ2 = Y −ε1 ãε(1 + d−ε1 ) + Y −ε3 (d−ε2 + d−ε1 ) and Φ3 = Φ4 = Y −ε1 ãε(d−ε2 +

d−ε1 ) + Y −ε3 (1 + d−ε1 ), so

λc11 = λc22 = Aε1Y
−ε

1 /Φ1 =
1

1 + d−ε1 + ã−εxεc(d
−ε
2 + d−ε1 )

=
1

(1 + d−ε1 )(1 + ã−εxεcr
c)

λc33 = λc44 = Aε3Y
−ε

3 /Φ3 =
1

1 + d−ε1 + ãεx−εc (d−ε2 + d−ε1 )
=

1

(1 + d−ε1 )(1 + ãεx−εc rc)

For the uncorrelated state Au, Φ1 = Φ3 = Y −ε1 ãε(1 + d−ε2 ) + 2Y −ε2 d−ε1 and Φ2 = Φ4 = Y −ε2 (1 +

d−ε2 ) + 2Y −ε1 ãεd−ε1 , so

λu11 = λu33 = Aε1Y
−ε

1 /Φ1 =
1

1 + d−ε2 + 2ã−εxεud
−ε
1

=
1

(1 + d−ε2 )(1 + ã−εxεur
u)

λu22 = λu44 = Aε2Y
−ε

2 /Φ2 =
1

1 + d−ε2 + 2ãεx−εu d−ε1

=
1

(1 + d−ε2 )(1 + ãεx−εu ru)

Thus, we obtain the following demeaned values of the log domestic shares of expenditure

l̂nλ11 = −1
2 [ln (1 + xεã−εr)− ln (1 + ãεx−εr)]

l̂nλ44 = −l̂nλ11

when evaluated at (rc, xc) and (ru, xu) for the two respective equilibria.
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The covariance of productivity and the domestic share of expenditure is therefore

cov(lnAi, lnλii) =
−1

4
ln ã

[
ln
(
1 + xεã−εr

)
− ln

(
1 + ãεx−εr

)]
Recall that ε and ã are fixed parameters while x is a function of r. This covariance is positive

because ã > x.55

It can be shown that cov(lnAi, lnλii) is increasing in r.

dcov(lnAi, lnλii)

dr
∝ −

d ln
(

1+xεã−εr
1+ãεx−εr

)
dr

∝
(
ã

x

)ε
−
(x
ã

)ε
︸ ︷︷ ︸

>0

− rε
x

[
2 + xεã−ε + x−εãε

]
︸ ︷︷ ︸

>0

dx

dr︸︷︷︸
<0

> 0

Since ru > rc, the covariance of productivity and the domestic share of expenditure is lower

for Ac than Au. Thus, the covariance of productivity and the equilibrium gains from trade,

cov(lnAi,
−1
ε lnλii), is greater for Ac than Au.

var(ln(Ci/L)) is greater in the spatially correlated case

Proof. In both equilibria,

var(lnλii) =
2

4

(
l̂nλ11

)2
+

2

4

(
l̂nλ44

)2
=
(

l̂nλ11

)2
=

4ε2

(ln ã)2

(
cov(lnAi,−

1

ε
lnλii)

)2

.

Therefore

var(ln(Ci/L)) = var(Ai) + 2cov(lnAi,
−1

ε
lnλii) +

1

ε2
var(lnλii)

= var(Ai) + 2cov(lnAi,
−1

ε
lnλii) +

4

(ln ã)2

(
cov(lnAi,−

1

ε
lnλii)

)2

This is increasing in cov(lnAi,
−1
ε lnλii) if and only if

2 +
8

(ln ã)2
cov(lnAi,−

1

ε
lnλii) > 0 ⇐⇒ ln ã >

1

ε
ln

(
1 + ãεx−εr

1 + xεã−εr

)
This inequality is true. The triangle inequality for trade costs, d2 < d2

1, implies that ru < 1. If

r < 1 and ε ≥ 1, then R(
√
ã; r) ≤ 0.56 Thus, x∗(r) ≥

√
ã ∀r ∈ (0, 1). That implies the following

55ã > x because x is the largest positive zero of R(x; r), R(x′; r) < 0 ∀x′ ∈ (0, x), and R(ã; r) = (1+r)(ã−1)ã2ε > 0.
56

R(
√
ã; r) = ã

2ε+1
2 + rãε(ã

ε+1
2 − ã

ε
2 )− ã2ε = ãε

(
ã

1
2 + rã

ε
2 (ã

1
2 − 1)− ãε

)
≤ ãε

(
ã

1
2 + ã

ε
2 (ã

1
2 − 1)− ãε

)
= −ãε

(
ã
ε
2 − ã

1
2

)(
1 + ã

ε
2

)
≤ 0
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inequality:
1 + ãεx−εr

1 + xεã−εr
≤ ãεx−ε(1 + r)

xεã−ε(1 + r)
=

(
ã

x

)2ε

≤
(
ã√
ã

)2ε

= ãε

Thus, var(ln(Ci/L)) is increasing in cov(lnAi,
−1
ε lnλii).

This completes the proof of Proposition 1.

A.2.3 Circular geography

Next, we investigate a symmetric geography with more than four countries and more than two

productivity levels using numerical simulations. Figure 3 presents this illustrative example in

which we parameterize Ai and τij on a circular geography. As stated in the main text, N = 50,

ε = 1, and Li = 1 ∀i. Countries have locations given by li = π
N (2i− 1−N) for i = 1, . . . , N .

Productivity lnAi has a mean value of 10 and follows a sine wave with amplitude 1 and frequency

θ.57 Bilateral trade costs are given by ln τij = .8 ln(1 + ‖li − lj‖), where ‖li − lj‖ is the distance

between locations i and j on the circle. Moran’s I is computed using spatial weight ωij = 1
1+‖li−lj‖

for i 6= j. Figure 3 depicts demeaned distributions. Table A.1 reports the means and variances of

countries’ welfare per capita under autarky and trade.

Table A.1: Outcomes for one-sector sine-wave economy

Frequency of lnA sine wave (θ) 1 2 3 4

Autarky welfare (lnA) variance 0.510204 0.510204 0.510204 0.510204
Trading-equilbrium welfare (lnC/L) variance 0.298203 0.226274 0.203006 0.184882

Economic characteristics other than productivity that influence domestic shares of expenditure

complicate bivariate plots like the right panel of Figure 3. A simple example is heterogeneity

in country size Li: all else equal, larger economies have a larger domestic share of expenditure.

Variation in size orthogonal to productivity simply adds noise to the bivariate plot. However,

variation in size correlated with productivity also introduces omitted variable bias. This can be

addressed by examining the covariance of the domestic share of expenditure and productivity

conditional on size. More generally, any time-invariant country characteristics that influence the

domestic share of expenditure and might be correlated with productivity can be absorbed by

country fixed effects.

We illustrate this in Figure A.2, which depicts the relationship between lnλii and lnAi in an

environment that extends the circular geography and sine-wave productivity parameterization used

in Figure 3 to feature heterogeneous country sizes. In particular, size lnLi is the sum of a sine

57The standard deviation of a sine wave is proportional to its amplitude and independent of its frequency. This is
true for both the function and our N -point discretization.
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wave with mean value 10, amplitude 1, and frequency θL = 1 and Gaussian noise ∼ N (0, 1). Thus,

country size lnLi is positively correlated with productivity lnAi in the θ = 1 state. The left

panel depicts the covariance of lnλii and lnAi for the frequencies θ = 1 and θ = 4. The right

panel depicts these covariances conditional on country fixed effects, which we estimated using the

equilibrium outcomes of the five equilibria associated with θ = 1, 2, 3, 4, 5. While our ceteris paribus

prediction is not evident in the left panel due to omitted variable bias, the right panel shows that

the covariance of lnλii and lnAi is lower when θ is lower after country fixed effects absorb the

consequences of heterogeneous country sizes.

Figure A.2: Circular geography with heterogeneous sizes and productivity sine wave
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Notes: This figure depicts the λii–Ai relationship for an economy with a circular geography and a productivity
distribution that follows a sine wave with frequency θ. Geographic locations, trade costs, and the trade elasticity
are the same as in Figure 3. Country sizes Li are positively correlated with Ai in the θ = 1 state. The residuals in
the right panel are obtained by subtracting the country-level mean values of lnλii and lnAi across the five equilibria
associated with θ = 1, 2, 3, 4, 5. See Appendix A.2.3 for parameterization details.

The real world features productivities and trade costs that do not exhibit the symmetry of a sine

wave on a circle. Departing from the sine-wave distribution, Figure A.3 depicts the expenditure-

productivity relationship for the circular geography with equal-sized countries when we shuffle a

productivity vector drawn from the normal distribution so as to vary its spatial correlation. They

were generated by shuffling a vector lnA0 that was drawn from N (0, 1). There is a clear negative

relationship: as Moran’s I increases, the equilibrium domestic share of expenditure is less responsive

to domestic productivity.

A.2.4 Calibrated geography

To examine our prediction with realistic geography, productivities and trade costs, we simulate a

global economy made up of 158 countries whose geographic coordinates, cereal yields, and crop

areas are their 1961–2013 averages in our data. We impose distance-related trade costs and swap

pairs of countries’ productivity levels in order to vary spatial correlation without altering the

mean or variance of the productivity distribution. We recover the covariance of expenditure and

productivity in each equilibrium by regressing the domestic share of expenditure for country i at
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Figure A.3: Circular geography with equal-sized countries and arbitrary productivities
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Notes: This figure depicts the λii-Ai relationship in an economy with a circular geography for three randomly
generated productivity distributions. Geography, equal-sized locations, and trade costs are the same as in Figure 3.

“time” t, where each t denotes an equilibrium associated with a different productivity distribution,

on its own productivity and fixed effects:

lnλiit = βt lnAit + πIi + πTt + µit. (A.8)

As in the right panel of Figure A.2, the country fixed effects πIi control for differences in countries’

time-invariant determinants of the domestic share of expenditure, such as size and remoteness. The

“year” fixed effects πTt control for differences in the average domestic shares of expenditure across

different spatial distributions of productivity.

The coefficients βt in equation (A.8) characterize the conditional covariance of lnλii and lnAi in

each equilibrium. Since the equilibrium value of lnλii depends on the entire vector of productivities

and not just lnAi, as shown by the gravity equation (2.1), this covariance differs across equilib-

ria.58 Relating the general-equilibrium elasticity βt to properties of the exogenous productivity

vector shows how this covariance’s contribution to welfare inequality depends on properties of the

productivity vector. Figure A.4 shows that this covariance exhibits a negative and roughly linear

relationship with Moran’s I, a statistic that captures the spatial correlation of productivities. On

this realistic geography, when productivities are less spatially correlated, the equilibrium covariance

of lnλii and lnAi is more positive and thus welfare inequality is lower.

58For the same reason, we expect the elasticity ∂ lnλii
∂ lnAi

to vary across i, so that βt is an average elasticity.
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Figure A.4: Real-world geography and bilateral productivity swaps
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Notes: Each observation is the estimated productivity elasticity of domestic expenditure share and spatial correlation
of productivities for the equilibrium resulting from a bilateral swap of two countries’ productivity levels. Countries’
productivities and factor endowments are set equal to their long-run averages of cereal yield and log crop area,
respectively. Bilateral trade costs are proportionate to bilateral distances between countries’ crop centroids. The
trade elasticity is set to 8.59 and the scale of trade costs is set so that the distance elasticity of trade is 1.46.
Equilibria computed for 7499 bilateral swaps of productivities. Linear fit shown as solid line. Local polynomial fit
for 1st through 99th percentiles of spatial correlation shown as dashed line. Equilibrium associated with long-run
averages shown as square.

While the line of best fit in Figure A.4 is not perfect, the Moran’s I statistic aptly summarizes

how the spatial structure of productivity affects welfare inequality. In the model, the covariance

of productivity and gains from trade is determined by the general-equilibrium solution of a system

of non-linear equations. In Appendix Figure E.1, we examine how well relating this covariance to

Moran’s I for productivity captures changes in the variance of welfare per capita. For each of the

equilibria depicted in Figure A.4, we compare the variance of welfare per capita in the model to

that predicted by using the line of best fit. Regressing variance of welfare per capita in the model on

its predicted value yields an R2 of .93. Thus, a log-linear specification employing Moran’s I aptly

captures how welfare inequality determined by the general-equilibrium model depends on the spatial

structure of productivity. Our empirical investigation will therefore estimate the expenditure-

productivity relationship using a linear regression and exogenous variation in productivities without

imposing the full structure of a quantitative trade model.59

59An alternative way to examine the predicted expenditure-productivity relationship would be to calibrate the trade
model to rationalize the observed data from one year, introduce a change in the spatial correlation of productivities,
and then examine how well the calibrated model’s predicted expenditure responses align with observed changes.
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A.3 Multiple-sector case

We obtained predictions about the spatial correlation of absolute advantage Ai using a theoretical

framework that makes two important assumptions about the pattern of comparative advantage.

First, there is only one sector. Second, the pattern of comparative advantage across varieties within

that sector is symmetric across countries. This appendix section extends the model to multiple

sectors. The following appendix section examines the case of correlated comparative advantage.

Our empirical investigation exploits exogenous variation in the spatial distribution of produc-

tivities in the agricultural sector, which constitutes a small share of global trade. What happens

in an economy with multiple sectors? This appendix section shows that our prediction linking the

spatial correlation of productivities and the productivity-expenditure relationship holds for each

sector in a multi-sector gravity model of trade. When consumers have Cobb-Douglas preferences

over sectors and CES preferences over varieties within sectors, there are multi-sector analogues

of equations (1), (2), and (A.2) that sum over sectors using their expenditure shares. Thus, the

previous section’s predictions about trade in one sector can be investigated in a multi-sector world

that introduces an additional dimension of comparative advantage.

Preferences. Individuals in country i have preferences that are Cobb-Douglas over sectors

s = 1, . . . , S and constant elasticity of substitution (CES) within sectors. Thus, the relevant price

indices are

Pi =
S∏
s=1

Pαisis and Pis =

(∫
ωs

pi(ωs)
1−σsdωs

)1/(1−σs)
,

where αis ≥ 0 are expenditure shares (
∑S

s=1 αis = 1) and σs are sectoral elasticities of substitution

across varieties.

Production. Productivity in country j in sector s is Ais.

Trade costs. Selling one unit to j from i in sector s requires producing τijs ≥ 1 units, with

τiis = 1.

Gravity equation. Denote sales from i to j in sector s by Xijs and j’s total expenditure by

Xj ≡
∑N

i=1

∑S
s=1Xijs. Across sectors, Cobb-Douglas preferences cause optimizing consumers to

spend αjs of their total expenditure in sector s, Xjs = αjsXj . Within each sector, CES preferences

result in the share of expenditure by j on goods from i in sector s taking the form of a gravity

equation:

λijs =
Xijs

Xjs
=

χis (τijswi)
−εs∑N

l=1 χls (τljswl)
−εs =

χis (τijswi)
−εs

Φjs
.

Equilibrium. In a competitive equilibrium, labor-market clearing, goods-market clearing, and

This approach would encounter two challenges. First, computing the spatial correlation of productivities requires
productivity levels. Common calibration procedures, such as “exact hat algebra” (Costinot and Rodŕıguez-Clare,
2014), do not identify these productivity levels. One would therefore need to explicitly estimate many structural
parameters to pursue this approach. Second, since other shocks affect both expenditure shares and productivities, this
alternative approach would still require the researcher to select relevant exogenous variation and define a criterion for
evaluating model fit. Our instrumental-variables approach employs standard statistical criteria to define appropriate
exogenous variation and perform causal inference.
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budget constraints are satisfied such that total income Yi = wiLi and sectoral income Yis = wiLis

satisfy Yis =
∑N

j=1Xijs, Yi =
∑S

s=1 Yis, and Xis = αisYi for all countries. The equilibrium system

of equations is

Yis =
N∑
j=1

λijsαjs

S∑
s′=1

Yjs′ .

In this environment, real consumption per capita is

ln

(
Ci
Li

)
=

S∑
s=1

αis

(
lnAis + γs −

1

εs
lnλiis

)
. (A.9)

The first two terms,
∑S

s=1 αis (lnAis + γs), are per capita welfare in autarky, and the final term,

−
∑S

s=1
αis
εs

lnλiis, summarizes the gains from trade.

Dispersion in per capita welfare across countries thus depends on the exogenous variation in

productivities Ais and the endogenous variation in domestic shares of expenditure λiis. For the sake

of expositional brevity, assume that expenditures shares are common across countries, αis = αs ∀i
In that case, the variance of per capita welfare is

var

(
ln

(
Ci
Li

))
= var

(
S∑
s=1

αis lnAis

)
+ var

(
S∑
s=1

αis
εs

lnλiis

)
− 2

S∑
s=1

S∑
s′=1

αsαs′

εs′
cov (lnAis, lnλiis′)

To examine the role of spatial correlation, consider two productivity distributions – a correlated

state c and an uncorrelated state u. Assume that unconditional variance of the productivity

distributions is the same, var
(∑S

s=1 αis lnAcis

)
= var

(∑S
s=1 αis lnAuis

)
. The difference in welfare

dispersion then depends on the covariance of productivities and domestic shares of expenditure,

both within and across sectors, and between domestic shares of expenditure.

var (ln (Cci /Li))− var (ln (Cui /Li)) = 2
S∑
s=1

S∑
s′=1

αsαs′

εs′

{
cov (lnAuis, lnλ

u
iis′)− cov (lnAcis, lnλ

c
iis′)

}
−

S∑
s=1

S∑
s′=1

αsαs′

εsεs′

{
cov (lnλuiis, lnλ

u
iis′)− cov (lnλciis, lnλ

c
iis′)

}
(A.10)

Just as in the single-sector case, for typical values of the sectoral trade elasticities, 2
αsαs′
εs′

is an

order of magnitude larger than
αsαs′
εsεs′

. Thus, the difference in welfare dispersion is governed by the

cov (lnAis, lnλiis′) terms, provided that the block of cov (lnAis, lnλiis′) terms is the same order of

magnitude as the block of cov (lnλiis, lnλiis′) terms.

Under what circumstances is studying differences in cov (lnAis, lnλiis) in one sector alone in-

formative about welfare dispersion? For simplicity, consider the two-sector case and three possible

relationships between the two sectors: perfectly correlated productivities, perfectly anti-correlated

productivities, and orthogonal productivities.
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Table A.2: Outcomes for two-sector sine-wave economy

Frequency of lnA1 sine wave (θ1) 1 2 3 4

Autarky welfare (1
2 lnA1 + 1

2 lnA2) variance 0.255102 0.255102 0.255102 0.255102
Trading-equilbrium welfare (lnC/L) variance 0.114255 0.097649 0.092189 0.087935

In the perfectly correlated case, there is little scope for adjustment across sectors, and thus

outcomes are similar to those obtained in the one-sector environment. In fact, if all sectors have

perfectly correlated productivities (Ais ∝ Ai ∀s), perfectly correlated spatial linkages (τijs ∝ τij ∀s),
and equal trade elasticities (εs = ε ∀s), then expenditure shares are equal across sectors, λijs = λij ,

and the difference in welfare dispersion in equation (A.10) is exactly proportionate to the single-

sector expression in equation (A.2).

If sectoral productivities are perfectly anti-correlated, then outcomes in one sector may be

exactly offset by outcomes in another, leaving welfare unchanged. That is, it is possible to construct

circumstances in which the sum of covariances of productivities and domestic shares of expenditure

within sectors is exactly the opposite of the sum of cross-sector covariances. Consider the two-sector

case with equal expenditure shares α1 = α2 = 1
2 ∀j and equal trade elasticities ε1 = ε2 = ε. If the

two sectors’ productivities are perfectly anti-correlated, such that lnAi1 +lnAi2 is a constant, then

it can be shown that
∑S

s=1

∑S
s′=1

αsαs′
εs′

cov (lnAis, lnλiis′) = 0. Thus, our predictions about trade

flows are valid, but the welfare consequences of these changes are fully offset by the non-agricultural

sector’s anti-correlated changes.

What about the orthogonal case? Figure A.5 depicts a two-sector sine-wave economy with two

symmetric sectors that differ only in their sine-wave frequency. Table A.2 reports the means and

variances of countries’ welfare per capita under autarky and trade. Compared to Table A.1, the

variance of autarky welfare is lower because autarky welfare is the simple average of two sectors’ (or-

thogonal) productivities with the same mean and variance. The mean trading-equilibrium welfare

is higher (the gains from trade are larger) in the multi-sector case due to gains from specialization

according to comparative advantage. This additional margin of adjustment also dampens the degree

to which greater spatial correlation of productivities in one of the two sectors affects the variance

of welfare in the trading equilibrium, but our main prediction still holds in this multi-sector setting

with orthogonal productivities.

A.4 Spatial correlation of comparative advantage

This appendix section addresses how the spatial correlation of comparative advantage interacts with

the spatial correlation of absolute advantage. Introducing spatially correlated comparative advan-

tage could reverse how the expenditure-productivity relationship varies with the spatial correlation

of absolute advantage.

The predictions in the main text concern the spatial correlation of absolute advantage Ai when
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Figure A.5: Two-sector sine-wave economy: cov(lnλii1, lnAi1)
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Notes: This figure depicts the λiis–Ais relationship for s = 1 in a two-sector economy in which sectoral productivity
follows a sine wave with frequency θs. The two series depicted are frequencies θ1 = 1 and θ1 = 4 for the first
sector. The second sector has frequency θ2 = 10 in both cases. The two sectors have identical trade costs τijs,
expenditure shares αi1 = αi2 = 1

2
, and trade elasticities ε1 = ε2. The two lines are the line of best fit for each series.

When productivities are more spatially correlated (when θ1 is lower), cov(lnλii1, lnAi1) is lower. See Table A.2 in
Appendix A.3 for details of this example.

comparative advantage is symmetric across countries. Most quantitative trade models assume this

pattern of comparative advantage.60 In this appendix section, we relax this assumption to examine

how the spatial correlation of comparative advantage may interact with the spatial correlation of

absolute advantage. Our thought experiment varies the spatial correlation of absolute advantage,

holding the pattern of comparative advantage fixed.61

To consider the role of spatially correlated patterns of comparative advantage, we extend the

Eaton and Kortum (2002) model, in which comparative advantage is symmetric across countries, to

have “continents” of countries with correlated relative productivities. The world economy consists

of N countries partitioned across k = 1, . . . ,K continents. Country i belongs to continent k(i) and

its productivity in good ω is zi(ω). We depart from Eaton and Kortum (2002) by assuming that

the vector of productivities (Z1, . . . , ZN ) is drawn from a multivariate nested Fréchet distribution:

F (z1, . . . , zn) = exp

−
K∑
k=1

 ∑
i:k(i)=k

(Tiz
−ϑ
i )

1
ρk

ρk
 ,

60A notable exception is recent work by Lind and Ramondo (2023) that generalizes quantitative Ricardian models
by tractably relaxing this assumption.

61Consistent with this assumption, column 2 of Table C.1 shows that the distance elasticity of trade is unaffected by
ENSO, our source of exogenous variation in the spatial correlation of absolute advantage. In the Eaton and Kortum
(2002) model, this elasticity embodies the pattern of comparative advantage.
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Table A.3: Estimates of β1 and within-continent correlation 1− ρ

Within-continent correlation 1− ρ
K 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2 -0.112 -0.111 -0.108 -0.101 -0.090 -0.073 -0.049 -0.022 0.002 0.014
3 -0.112 -0.110 -0.106 -0.099 -0.088 -0.071 -0.048 -0.021 0.005 0.018
4 -0.112 -0.108 -0.103 -0.094 -0.082 -0.064 -0.041 -0.013 0.013 0.029

Notes: This table reports estimates of β1 obtained from the regression lnλiit = β0 lnAit + β1It lnAit + πIi +

πTt + µit on equilibrium outcomes from a simulated global economy with 50 countries as described in the text

of Appendix A.4. Moran’s I is computed using spatial weight ωij = 1
1+‖li−lj‖

for i 6= j. The correlation

parameter ρk = ρ ∀k, the dispersion parameter is ϑ = 8.28 (Eaton and Kortum, 2002), and the level parameter

lnTi follows a sine wave, as in Section 2.1, with θ = 1, . . . , 8. In the standard model, 1− ρ = 0.

where the location parameter Ti governs the absolute advantage of country i and the dispersion pa-

rameter ϑ is common across countries. Parameters (ρ1, . . . , ρk) govern the degree of within-continent

correlation in productivities, which is decreasing in ρk. When ρk = 1 ∀k, these productivities are

independent, as in Eaton and Kortum (2002). Note that λii is a sufficient statistic for welfare only

in the case in which ρk = 1 ∀k. Here, we focus on the consequences of the spatial correlation of

comparative advantage for how the observed expenditure-productivity relationship varies with the

spatial correlation of absolute advantage.

After considerable algebraic manipulations, it can be shown that the gravity equation for this

generalized productivity distribution is

λij =
(Ti(wiτij)

−ϑ)
1

ρk(i)∑
m:k(m)=k(i)

(Tm(wmτmj)−ϑ)
1

ρk(i)

Φk(i)j

Φj
,

where Φkj =
(∑

i:k(i)=k(Ti(wiτij)
−ϑ)

1
ρk

)ρk
and Φj =

∑K
k=1 Φkj .

To study the interaction of the spatial correlation of comparative advantage and the spatial

correlation of absolute advantage, we simulate a world economy with a symmetric geography and

a sine-wave productivity distribution, as in Section 2.1. We divide the 50 countries into two, three,

or four continents with ρk = ρ ∀k. As we increase within-continent correlation in comparative

advantage by lowering ρ from 1.0 to 0.1 in steps of size 0.1, we find that the effect of spatial

correlation in absolute advantage is initially dampened and then reversed. As reported in Ta-

ble A.3, for the highest values of 1 − ρ, the estimated β1 is positive. That is, for sufficiently high

within-continent correlation of comparative advantage, the cov(lnλii, lnAi) relationship depicted

in Figure 3 becomes steeper with greater spatial correlation of Ai, not flatter. In short, when

neighboring countries specialize in similar products, a neighbor’s productivity improvement may

actually worsen a country’s terms of trade by increasing the world supply of that country’s exports

and thereby depressing its export price.
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Thus, our empirical estimate of β1 in equation (3) captures the effect of spatial correlation

in absolute advantage as mediated by the existing spatial correlation in comparative advantage.

Most quantitative trade models have symmetric patterns of comparative advantage, in which case

β1 should be negative. If patterns of comparative advantage within cereals are very spatially

correlated, β1 could be positive. Our empirical estimates in Section 4 reject this possibility.

A.5 Mobile labor

In an economic-geography model in which welfare differences are arbitraged away by mobile factors

of production (e.g., Allen and Arkolakis 2014), greater spatial correlation of productivities makes

population density, rather than welfare per capita, more unequal across locations. We demon-

strate this using a symmetric geography with four locations, like the geography used in Appendix

Section A.2.2, in which the population of each location is endogenously determined. Locations’

productivities vary exogenously, and their amenities are identical.

Given four locations with trade costs given by equation (A.5), total population L, and an

elasticity of substitution σ, the endogenous populations {Li}4i=1 and welfare level W must satisfy

two equations:

Lσ̃i = A
σ̃(σ−1)
i W 1−σ

4∑
j=1

τ1−σ
ji A

(1−σ̃)(σ−1)
j Lσ̃j and L =

4∑
j=1

Lj ,

where σ̃ ≡ σ−1
2σ−1 . Let L denote the vector containing L1, . . . , L4, let T denote the (symmetric)

matrix of trade costs raised (element-wise) to the power 1
1−σ , and let A denote the 4-by-4 diagonal

matrix with {A1, . . . , A4} on the diagonal.

The equilibrium equation of interest can then be written as(
I− 1

W σ−1
Aσ̃(σ−1)TA(1−σ̃)(σ−1)

)
Lσ̃ = 0.

W σ−1 is the eigenvalue and Lσ̃ is the eigenvector of the matrix Aσ̃(σ−1)TA(1−σ̃)(σ−1).

Let Ac and Au denote diagonal matrices whose diagonal elements are (ã, ã, 1, 1) and (ã, 1, ã, 1),

respectively, with ã > 1. Also, let ā ≡ ãσ−1 > 1, d̄1 ≡ d1−σ
1 , and d̄2 ≡ d1−σ

2 .

Consider the eigenvalue λc = W σ−1
c and eigenvector Lσ̃c associated with A

σ̃(σ−1)
c TA

(1−σ̃)(σ−1)
c .

We can verify that the eigenvector Lσ̃c = (xc, xc, 1, 1) and the eigenvalue λc = ā1−σ̃(d1−σ
1 +d1−σ

2 )xc+

d1−σ
1 + 1 satisfy the equation of interest. This implies that the equilibrium value of xc is given by

ā1−σ̃(d̄1 + d̄2)x2
1 − (ā− d̄1 − 1 + ād̄1)x1 − (d̄1 + d̄2)āσ̃ = 0. (A.11)

Similarly, in the case of Au, consider the eigenvalue λu = W σ−1
u and the eigenvector Lσ̃u as-

sociated with A
σ̃(σ−1)
u TA

(1−σ̃)(σ−1)
u . We can verify that the eigenvector Lσ̃u = (xu, 1, xu, 1) and

the eigenvalue λu = 2ā1−σ̃d̄1x2 + d̄2 + 1 satisfy the equation of interest. This implies that the
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equilibrium value of xu is given by

2ā1−σ̃d̄1x
2
u − (ā− d̄2 − 1 + ād̄2)xu − 2āσ̃d̄1 = 0. (A.12)

The quadratic equations (A.11) and (A.12) each have one positive and one negative root. Re-

stricting attention to the positive roots, we can compare the relative sizes of xc and xu. It can be

shown that xc > xu.

The equilibrium values of Lc and Lc are

Lc =
L

2x
1
σ̃
c + 2


x

1
σ̃
c

x
1
σ̃
c

1

1

 and Lu =
L

2x
1
σ̃
u + 2


x

1
σ̃
u

1

x
1
σ̃
u

1

 .

It can then be shown that cov(lnAi, lnLi) is greater for Ac than Au because xc > xu. Thus, with

welfare equalized across locations, the productivity-population relationship is more positive when

productivities are more spatially correlated.

B Data sources and construction

Agricultural data Our cereal data cover barley, maize, millet, oats, rice, rye, sorghum, and

wheat. We use cereal-level measures of output (in metric tons, 1961–2013), yield (in metric tons

per harvested hectare, 1961–2013), trade quantity (in metric tons, 1961–2013), trade value (in

nominal USD, 1961–2013), producer prices (in nominal local currency, 1966–2013), and change in

storage (in metric tons, 1961–2013) for each country and year obtained from the FAO.62

Our country-year measure of aggregate cereal yield is harvested area-weighted cereal-level yield.

Domestic share of expenditure aggregated across cereals c = 1, . . . , C for country i in year t is

λiit =

∑C
c=1Xciit∑C

c=1Xciit +
∑

j 6=i
∑C

c=1Xcjit

where Xcjit is the value of cereal c sold to i by j in year t. We observe Xcjit for j 6= i. We construct

Xciit using data on output quantities, export quantities, and prices. Xciit = (qcit− exportscit) · pcit,
where qcit is domestic output quantity, exportscit is export quantity, and pcit is domestic price.

Domestic consumption of domestic production, qcit− exportscit, is non-negative for all observations

in our main country-year estimation sample.

There are two potential data sources for price pcit, neither of which are ideal. The first data

source is export unit values,
∑
j 6=iXcijt

exportscit
, which are observed when a country exports a cereal. Un-

fortunately, only 53% of the cereal-country-year observations in our sample with positive output

quantities have positive export quantities. The second price measure, producer prices in nominal

62Available at http://www.fao.org/faostat/en/#data.
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local currency, presents two challenges. First, producer prices are available for only 59% of the

cereal-country-year observations with positive cereal output. Second, due to resource constraints

at the time, the FAO did not standardize the collection of 1966–1990 producer prices as it did for

prices since 1991. As such, the FAO warns against the combined use of the full 1966–2013 panel

and notes that it is “not in a position to give any explanation for the existing differences” between

1966–1990 and 1991–2013 producer prices.63 Thus, despite extensive efforts to convert 1966–1990

FAO producer prices into nominal US dollars, use of producer prices raises concerns.

In light of these limitations and to ensure sufficient statistical power in our estimation, we elect

to approximate domestic expenditure
∑C

c=1Xciit by domestic quantity times average export unit

value,
(∑C

c=1(qcit − exportscit)
)(∑C

c=1

∑
j 6=iXcijt∑C

c=1 exportscit

)
.64 This measure is available for every year that

a country exports at least one cereal, yielding a sizable estimation sample. This approximation

of domestic expenditure
∑C

c=1Xciit makes our outcome variable a noisy measure of the domestic

share of expenditure.

We validate our benchmark measure of the cereal domestic share of expenditure in both the time-

series and cross-sectional dimensions. Along the time-series dimension, we compare our measure

with the “cereal trade reduction index” developed by Lloyd, Croser and Anderson (2009) based

on Anderson and Neary (2005). This index is defined as the country ad valorem trade tax rate

which would result in the trade reduction as all trade distortions in that country. The top panel

in Figure B.1 shows annual time series for country-averaged cereal domestic share of expenditure

and trade reduction index, after removing a quadratic time trend from each. The bottom panel

shows a scatterplot of these two detrended annual variables. These two global measures of trade

distortions are strongly correlated and both show agricultural protection peaking in the late 1980s,

as discussed in Lloyd, Croser and Anderson (2009).

With regard to the cross-sectional dimension, Table B.1 correlates countries’ average cereal

domestic expenditure share with average agricultural import tariffs (column 1) and with average

log GDP per capita (column 2) for the 1988-2013 period (dictated by the start year of our import

tariff data). Countries that are more closed to trade in cereals tend to have higher agricultural

import tariffs and lower GDP per capita.

For several robustness checks, we use bilateral trade data from the U.N. Comtrade database.65

Comtrade data has the disadvantage of using cereal codes that differ from that used by the FAO.

As such, despite careful matching of cereal categories across the two datasets, we prefer to use

production and trade data that is consistently reported by the FAO. However, trade data at the

bilateral level is available from Comtrade starting in 1962, whereas it is only available from the

FAO starting in 1986. Thus, for the gravity equations estimated in Table C.1, we use Comtrade

bilateral trade data. As a robustness check, we show in column 5 of Table F.8 that our main result

63See here: http://fenixservices.fao.org/faostat/static/documents/PA/PA_e.pdf
64Any estimation at the cereal level will either have many missing observations or have to rely on the same country-

year average cereal prices used in our aggregate benchmark estimate, which would likely yield limited additional
insight.

65Available at https://comtrade.un.org

67

http://fenixservices.fao.org/faostat/static/documents/PA/PA_e.pdf
https://comtrade.un.org


Figure B.1: Cereal domestic share of expenditure vs. trade reduction index

Notes: The top panel shows the annual country-averaged cereal domestic share of expenditure and cereal trade
reduction index from Lloyd, Croser and Anderson (2009). Both series are residuals after removing a quadratic time
trend. The bottom panel shows a scatterplot between these two variables and reports statistics from a bivariate
linear regression. Serial-correlation and heteroskedasticity-robust standard errors with optimal bandwidth are shown
(Newey and West, 1987).

is unaffected when we alternatively construct domestic expenditure share using Comtrade data.

We also use bilateral trade data from Comtrade to construct a measures of the change in a

country’s terms of trade each year. A country is better off if its initial net export vector is more

expensive at new prices than at old prices (Dixit and Norman, 1980, p.132). Define the normalized

net export vector for country i in year t − 1 by a vector whose 2 × C × (N − 1) elements are

exportscijt−1 and −exportscjit−1 for j 6= i multiplied by a scalar so that its norm is one.66,67 Define

the accompanying price-change vector for country i in year t by a vector whose 2 × C × (N − 1)

elements are ∆pcijt and ∆pcjit for j 6= i, where ∆ denotes the time difference operator. We

use changes in unit values of bilateral trade flows to proxy for these price changes. The change

in the terms of trade is the inner product of these two vectors, which we denote ∆ToTit, with

∆ToTit > 0 indicating an improvement in country i’s terms of trade. Our measure is imperfect

because unit values are a noisy measure of prices and the price-change element ∆pcijt is not observed

if exportscijt = 0. Absent further information, we impose ∆pcijt = 0 for these elements. Beyond

cereals, the change in the terms of trade for a broader set of commodities, such as all products in

SITC sector 0 “food and live animals”, can be computed analogously using the quantities and unit

values reported in Comtrade data.

ENSO index Annual ENSO variations can be detected using different indices, with the most

commonly used being equatorial Pacific sea surface temperature (SST) anomalies. We primarily

66Recall N is the number of countries. The normalizing scalar is 1∑
c,j exportscijt−1+exportscjit−1

. Absent the normal-

ization, larger economies would mechanically exhibit larger terms-of-trade changes.
67Note that exportscijt−1 and −exportscjit−1 are distinct elements in this net export vector, so that the same cereal

imported and exported by the same country is not assumed to be a homogeneous good.
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Table B.1: Cross country correlates of cereal domestic expenditure share
(1) (2)

Import tariff log GDP per cap.

Avg. dom. expenditure share 5.548 -1.194
(2.454) (0.354)
[0.025] [0.001]

Observations 138 143
Notes: This table reports estimates of regressions of country charac-
teristics on average domestic cereal expenditure share. The dependent
variables are average 1988–2013 ad valorem tariff on agricultural im-
ports (column 1) and log GDP per capita (column 2). The tariff data
from Teti (2024) start in 1988. Heteroskedastic-robust standard errors
in parentheses; p-values in brackets.

utilize 1960-2013 values of the monthly Kaplan NINO4 index which averages SST over the area

5◦S-5◦N, 160◦E-150◦W. For robustness checks in Table F.6, we also use the NINO3 (5◦S-5◦N,

150◦W-90◦W), NINO34 (5◦S-5◦N, 170◦W - 120◦W), and NINO12 (10◦S-0◦, 90◦W-80◦W) indices

(Kaplan et al., 1998).68

Historical temperature and precipitation Global temperature (in degrees centigrade) and

precipitation (in mm/month) variables constructed from monthly gridded global weather data at

a 0.5◦ latitude by 0.5◦ longitude resolution were obtained from the Center for Climatic Research

at the University of Delaware (Willmott and Matsuura, 2001). 1960-2013 monthly data was first

spatially aggregated from pixel to country-level using cross-sectional crop-area weights in 2000 from

Ramankutty et al. (2008). For robustness checks in Table F.6, we also aggregate temperature from

pixel to country-level using total country area. Annual values are then constructed by averaging

January-December monthly values.

Projected temperature under climate change Global multi-model ensemble mean temper-

ature (in degrees centigrade) from monthly gridded global data at the 2.5◦ latitude by 2.5◦ longi-

tude resolution from the Coupled Model Intercomparison Project version 5 (CMIP5).69 2014–2099

monthly data was first spatially aggregated from pixel to country-level using cross-sectional crop-

area weights in 2000 from Ramankutty et al. (2008). Annual values are then constructed by

averaging January-December monthly values.

Geography Country latitude and longitude are defined as crop area-weighted average using the

global cross-sectional distribution of crop area in 2000 from Ramankutty et al. (2008). Great-circle

distances between these country centroids are computed using the haversine formula.

68Available at http://iridl.ldeo.columbia.edu/SOURCES/.Indices/.nino/.EXTENDED/
69Available at https://climexp.knmi.nl/selectfield_cmip5.cgi
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Global oil prices Monthly West Texas Intermediate crude oil spot price obtained from the St.

Louis Federal Reserve for 1961–2013.70 Annual values are then constructed by averaging January-

December monthly values.

Export restrictions Export restrictions come from the United Nations Conference on Trade

and Development’s (UNCTAD) TRAINS database.71 To construct the dummy variable used in

column 6 of Table F.3, we employ all export-related measures (Chapter P of the International

Classification of Non-Tariff Measures), excluding export subsidies. The indicator equals one for

country-year observations in which a new restriction on exporting any cereal to any trading partner

was introduced.

Tariffs Importer-exporter-year ad-valorum tariff data at the cereal level come from the World

Bank’s World Integrated Trade Solution (WITS) database.72 We use the WITS-defined effective

tariff rate, which generally takes the lowest available value among Most-Favored Nation, Bound,

and Preferential tariffs. To construct an aggregate cereal tariff value, we take the simple average

of nonmissing values across the eight major cereals.

C Gravity regressions

The theoretical model of Section 2 implies that the value of cereals exported by exporter i to

importer j in year t satisfies a gravity equation:

lnXijt = −ε ln τij + ln

(
χit
wεit

)
+ ln

(
Xjt

Φjt

)
. (C.1)

Two assumptions embodied in this gravity equation are pertinent to our main empirical test in

equation (3). First, trade costs τij must be positively related to bilateral distance for spatial corre-

lation of productivities to be relevant for consumption inequality. Second, we interpret equation (2)

assuming that the trade elasticity, ε, is constant. In particular, we assume that time-series variation

in the global spatial correlation of productivities does not alter the trade elasticity, allowing us to

use the observed change in the covariance between country productivity and own expenditure share

as a measure of the change in consumption inequality. Similarly, we assume that the trade elasticity

does not vary across trading partners. By contrast, in the model of spatially correlated comparative

advantage in Section A.4, the trade elasticity for pairs of countries on the same continent is higher

(in absolute value) when ρ < 1. The constant-elasticity assumption underlies the sufficient statistic

for welfare in Arkolakis, Costinot and Rodŕıguez-Clare (2012).

To examine these assumptions, Table C.1 reports several variants of gravity regressions. To

account for the typical preponderance of zero-valued bilateral trade observations (≈70% of sample),

70Available at https://fred.stlouisfed.org/series/WTISPLC
71Available at http://trains.unctad.org
72Available at https://wits.worldbank.org/tariff/trains/country-byhs6product.aspx?lang=en
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we use the Poisson pseudo-maximum likelihood estimator (Silva and Tenreyro, 2006). We find that

observed trade in cereals declines with distance and is consistent with a constant trade elasticity.

Column 1 of Table C.1 estimates a standard gravity equation following Head and Mayer (2014)

using bilateral distance as a (time-invariant) source of variation in bilateral trade costs (τij) and

exporter-year (it) and importer-year (jt) fixed effects to capture the second and third terms of

equation (C.1) respectively. Unsurprisingly, bilateral trade declines with distance: the distance

elasticity of trade is -1.4. The modest distance elasticity is consistent with cereals produced by dif-

ferent countries serving as imperfect substitutes.73 The regression exhibits the typical explanatory

power, accounting for 87% of the variation in cereal trade flows.74

In column 2 of Table C.1, we examine whether the distance coefficient responds to global

ENSO time-series variation. To do so, we introduce an interaction between bilateral distance and a

quadratic function of the sum of contemporaneous and lagged ENSO (i.e., ENSOt+ENSOt−1), the

functional form for ENSO used for our main IV results in Table 2. We introduce importer-exporter

fixed effects that absorb time-invariant components, including (uninteracted) bilateral distance.

The distance elasticity of trade does not vary with ENSO: the coefficients on the interactions are

very close to zero. Assuming the distance elasticity of trade costs is also invariant to ENSO,

this supports the assumption that our plausibly exogenous variation in the spatial correlation of

productivities does not alter the trade elasticity.

Finally, we use bilateral tariff variation to examine whether the trade elasticity varies with

the bilateral distance between trading partners. Assuming full passthrough of tariffs to costs,

the coefficient on a bilateral ad valorem tariff is the trade elasticity. Following Lind and Ramondo

(2023), we interact bilateral distance with time-varying tariffs to estimate distance-dependent trade

elasticities. Tariff data have two disadvantages: they are only available after 1990 and have many

missing values.75,76 With these caveats noted, column 3 reports a trade elasticity of ε = −7.7,

which is similar to the Caliendo and Parro (2015) estimate of ε = −8.59 that we employ in our

calculations. If comparative advantage were spatially correlated, so that neighboring countries

have more similar productivity distributions across varieties, we would find a positive coefficient on

the interaction between tariffs and distance. To the contrary, column 3 shows a (noisily estimated)

negative coefficient. We cannot reject the hypothesis that the trade elasticity is invariant to bilateral

distance.

73Relatedly, there would be no two-way trade if cereals were perfectly homogeneous commodities. Yet, 63% of
countries that trade cereals in a given year both import and export cereals that year. At the level of importer-
exporter pairs, 19% of trading pairs sell cereal in both directions.

74The pseudo R-squared when omitting the distance covariate is 0.74, implying that distance explains 50% of the
residual variation after accounting for importer-year and exporter-year fixed effects.

75The shorter time span means tariff data are not well suited for estimating whether the trade elasticity varies over
time with ENSO, the test in column 2 of Table C.1.

7691% of Comtrade observations with positive trade value at the importer-exporter-cereal-year level have missing
WITS tariff values.
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Table C.1: Gravity regression for international trade in cereals

Outcome is bilateral trade value

(1) (2) (3)

ln distanceij -1.430
(0.014)
[0.000]

ln distanceij × (ENSOt + ENSOt−1) 0.008
(0.011)
[0.491]

ln distanceij × (ENSOt + ENSOt−1)2 0.003
(0.009)
[0.730]

ln tariffijt -7.725
(4.997)
[0.122]

ln tariffijt × ln distanceij -2.791
(4.310)
[0.517]

Observations 640,482 466,364 10,028
Sample period 1962-2013 1962-2013 1991-2013
Pseudo R-squared 0.869 0.952 0.997

Notes: The dependent variable is annual bilateral (importer-reported)
cereal trade value from Comtrade. All models use the Poisson pseudo-
maximum likelihood estimator. Columns 1 and 2 include importer-year
and exporter-year fixed effects. Column 3 further includes importer-
exporter fixed effects. Standard errors, clustered by year, in parenthe-
ses; p-values in brackets.
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D Climate impact projection calculations

This section details the one-sector calculations reported in the main text.

D.1 Historical cereal contribution to welfare inequality

This section details the within-sample cereal contribution to welfare inequality calculation discussed

in Section 4.2 and shown in Table 2. Recall the expression for the variance of welfare in the one-

sector model in equation (2):

var (ln (Ci/Li)) = var (lnAi) + 2cov

(
lnAi,

−1

ε
lnλii

)
+ var

(
1

ε
lnλii

)
Real cereal consumption per capita would be welfare per capita if cereals were the only sector.

Consider the following experiment: suppose the spatial correlation of productivities increases from

the 1961–2013 historical mean, Ī = .214, by one standard deviation, σI = .0191. What is the

resulting percentage change in the cross-sectional variance of one-sector welfare, holding everything

else fixed? We denote these two hypothetical states as uncorrelated state u and correlated state c.

For the uncorrelated state, we define variance productivity as the average cross-sectional pro-

ductivity variance during 1961–2013:

var(lnAui ) ≡ Et[vari(lnAit|t)] (D.1)

Next, we define covariance between productivity and domestic share of expenditure during the

uncorrelated state as the average cross-sectional covariance during 1961–2013:

cov(lnAui , lnλ
u
ii) ≡ Et[covi(lnAit, lnλiit|t)] (D.2)

We further define the variance of domestic share of expenditure during the uncorrelated states as

the average variance during 1961–2013:

var(lnλiiu) ≡ Et[vari(lnλiit|t)] (D.3)

Note that the values in definitions (D.1), (D.2), (D.3) can be directly computed from data since

lnAit and lnλiit are observed.

For the correlated state c, var(lnAci ) is also given by definitions (D.1) since we assume pro-

ductivity variance is unaltered by changes in spatial correlation. cov(lnAci , lnλ
c
ii) and var(λcii),

however, have to be calculated as one does not directly observe data from a year in which only

It = Ī+σI while everything else is fixed at the historical mean. To do this, first recall the expression

for lnλit in equation (3):

lnλiit = β0 lnAit + β1It lnAit + Π′Zit + µit
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Our estimates of this equation can be employed to construct each component of equation (2) for the

correlated state. The covariance between productivity and domestic share of expenditure during

the correlated state is:

cov(lnAci , lnλ
c
ii) ≡ (β̂0 + β̂1(Ī + σI))Et[vari(lnAit|t)]

+ Et[covi(lnAit, Π̂
′Zit|t)] + Et[covi(lnAit, µ̂it|t)] (D.4)

The variance of domestic share of expenditure during the correlated state is:

var(lnλcii) ≡ (β̂2
0 + 2β̂0β̂1(Ī + σI) + β̂2

1(Ī + σI)
2)Et[vari(lnAit|t)]

+ Et[vari(Π̂
′Zit|t)] + Et[vari(µ̂it|t)]

+ 2(β̂0 + β̂1(Ī + σI))Et[covi(lnAit, Π̂
′Zit|t)]

+ 2(β̂0 + β̂1(Ī + σI))Et[covi(lnAit, µ̂it|t)]

+ 2Et[covi(Π̂
′Zit, µ̂it|t)] (D.5)

Each term in equations (D.4) and (D.5) is either directly observable or can be obtained by estimating

equation (3). For example, for the model estimated in column 4, panel B of Table 2, with β̂0 = 2.114

and β̂1 = −4.144, we have:

Et[vari(lnAit|t)] = .453

Et[vari(Π̂
′Zit|t)] = 1.04

Et[vari(µ̂it|t)] = .083

Et[covi(lnAit, Π̂
′Zit|t)] = −.497

Et[covi(lnAit, µ̂it|t)] = −.026

Et[covi(Π̂
′Zit, µ̂it|t)] = −.001

Applying equation (2), the percentage change in the variance of one-sector welfare in the correlated

state, relative to the uncorrelated state, is

var
(

ln
Cci
Li

)
− var

(
ln

Cui
Li

)
var(ln(Cui /Li))

=
var (lnAci )− 2

ε cov (lnAci , lnλ
c
ii) + 1

ε2
var (lnλcii)

var (lnAui )− 2
ε cov (lnAui , lnλ

u
ii) + 1

ε2
var (lnλuii)

− 1 (D.6)

To complete the calculation, let the agricultural trade elasticity be ε = 8.59 (Caliendo and Parro,

2015, Table A2). Values from equation (D.6) are shown in Table 2, with standard errors calculated

using the delta method.

D.2 Change in country-level welfare and welfare variance under climate change

This section discusses how we calculate the percentage change in the global variance of welfare

and the change in country-level welfare between the end of our estimation period, t̄ = 2013, and

the end of our projection period, T = 2099, under climate change for the one-sector case, holding
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everything else fixed.77 We compare two projections, one which omits climate-induced changes in

the spatial structure of agricultural productivity and another which allows for such changes.

We begin by showing how we quantify changes in country-level agricultural productivity as well

as the global variance and spatial correlation of agricultural productivity under climate change. We

then consider two projections of country-level domestic share of expenditure. The first projection,

which would be a typical projection of climate impacts, omits climate-induced changes in the

spatial structure of agricultural productivity. The second projection includes such changes. We

then compare changes in the (single-sector) variance of welfare and in country-level welfare over

the 20th century across these two projections.

Projecting agricultural productivity Recall equation (9) for lnAit during the estimation

period, t ∈ [1961, 2013]:

lnAit = k(Tit) + Ψ′Xit + νit

Column 1 of Table F.10 shows coefficients for k̂() from our benchmark specification, which is also

plotted in Figure 10. Using estimates from equation (9) and our business-as-usual CMIP5 ensemble

mean projected temperatures under climate change, T̂it, we first compute country-year agricultural

productivity under climate change during the projection period t ∈ [2014, 2099], holding everything

but temperature fixed to estimated t̄ = 2013 values:

l̂nAit = k̂(T̂it) + Ψ̂′Xit̄ + ν̂it̄ (D.7)

In the left panel of Figure 11, the black line shows var(l̂nAit) while the blue line shows Moran’s I,

Ît computed using l̂nAit, for each projection year.

Projecting domestic share of expenditure omitting and including change in spatial

structure We consider two projections of the domestic share of expenditure: one which holds

the global spatial correlation of productivities fixed to the 2013 value and another which allows it

to vary under climate change. Both projections use our benchmark estimate of β1 and β2 from

equation (3), shown in column 4, panel B of Table 2.

Holding the spatial correlation of productivities fixed to the t̄ = 2013 value (along with other

unprojected determinants), the domestic share of expenditure during the projection period, t ∈
[2014, 2099], is:

l̂nλ
n

iit = (β̂0 + β̂1It̄)l̂nAit + κ̂It̄ + Π̂′Zi,t̄ + µ̂it̄ (D.8)

where spatial correlation affects both the average domestic share of expenditure (κ) and its rela-

tionship to domestic productivity (β1).78

77Compared with the calculation described in Appendix D.1 and reported in Table 2, there is an added complication
as climate change also changes the variance of productivity.

78To obtain κ, we first recover year fixed effects from equation (3). κ̂ = 2.45 is the coefficient from a linear regression
of year fixed effects on It and a linear time trend.
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Allowing the spatial correlation of productivities to vary under climate change, the domestic

share of expenditure during the projection period, t ∈ [2014, 2099], is:

l̂nλ
s

iit = (β̂0 + β̂1Ît)l̂nAit + κ̂Ît + Π̂′Zi,t̄ + µ̂i,t̄ (D.9)

Projecting changes in global welfare variance From equation (1), the (single-sector) expres-

sion for welfare per capita of country i in year t is

ln (Cit/Lit) = lnAit + γ − 1

ε
lnλiit.

To compute the change in variance of welfare from the end of the estimation period, t̄ = 2013, to

any year during the projection period, t ∈ [2014, 2099], we difference equation (2):

var (ln(Cit/Lit))− var (ln(Cit̄/Lit̄)) = [var(l̂nAit)− var(lnAit̄)]

− (2/ε)[cov(l̂nAit, l̂nλiit)− cov(lnAit̄, lnλiit̄)]

+ (1/ε2)[var(l̂nλiit)− var(lnλiit̄)] (D.10)

For the projection which holds spatial structure fixed, equations (D.7) and (D.8) allow construction

of var(l̂nλ
n

iit) and cov(l̂nAit, l̂nλ
n

iit) for each year in the projection period. These then enter into

equation (D.10) to compute the change in welfare variance between 2014–2099 for the projection

that omits changes in spatial structure, var (ln (CniT /L
n
iT )) − var (ln (Cit̄/Lit̄)). That projected

welfare variance is shown as the solid gray line in the right panel of Figure 11.

Similarly, for the projection that allows climate-induced changes in spatial structure, equa-

tions (D.7) and (D.9) allow construction of var(l̂nλ
s

iit) and cov(l̂nAit, l̂nλ
s

iit) for each year in

the projection period. These then enter into equation (D.10) to compute the change in wel-

fare variance between 2014–2099 for the projection that includes changes in spatial structure,

var (ln (CsiT /L
s
iT )) − var (ln (Cit̄/Lit̄)). That projected welfare variance is shown as the solid red

line in the right panel of Figure 11.

We then calculate the percentage difference in the change in (single-sector) welfare variance

between projections that include and omit changes in spatial structure:

var (ln (CsiT /L
s
iT ))− var (ln (Cit̄/Lit̄))

var
(
ln
(
CniT /L

n
iT
))
− var (ln (Cit̄/Lit̄))

− 1 (D.11)

When applying baseline estimated parameters and an agricultural trade elasticity of ε = 8.59

(Caliendo and Parro, 2015, Table A2) to equation (D.11), we find that allowing climate change to

alter the spatial correlation of productivities predicts a 20% greater increase in welfare variance

than when spatial correlation is held fixed.
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Projecting changes in country-level welfare For the projection that omits changes in spatial

structure, the difference in country i welfare from t̄ = 2013 to T = 2099 is

ln(CniT /L
n
iT )− ln(Cit̄/Lit̄) = [l̂nAiT − lnAit̄]− (1/ε)

[
(β̂0 + β̂1It̄)(l̂nAiT − lnAit̄)

]
.

Likewise, for the projection that includes changes in spatial structure, the difference in country i

welfare from t̄ = 2013 to T = 2099 is

ln(CsiT /L
s
iT )−ln(Cit̄/Lit̄) = [l̂nAiT −lnAit̄]−(1/ε)

[
(β̂0 + β̂1ÎT )l̂nAiT − (β̂0 + β̂1It̄) lnAit̄ + κ̂(ÎT − It̄)

]
.

The difference in (one-sector) country welfare between projections that include and omit changes

in spatial structure is

[ln(CsiT /L
s
iT )− ln(Cit̄/Lit̄)]− [ln(CniT /L

n
iT )− ln(Cit̄/Lit̄)] = −(1/ε)[(β̂1 l̂nAiT + κ̂)(ÎT −It̄)]. (D.12)

Figures 12 and 13 show the country-level difference across projections.

E Appendix figures

Figure E.1: Welfare per capita, model vs approximation by linear regression
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Notes: For each equilibrium depicted in Figure A.4, we compute equilibrium welfare per capita in the model
(vertical axis) and welfare per capita predicted by an estimated linear regression (horizontal axis). The regression
specification is akin to the line of best fit depicted in Figure A.4, see equation (3). Predicted welfare per capita is
computed by plugging in predicted values of lnλii into equation (2). The R2 of the bivariate relationship is .93.
cov (lnAi, lnλii) − cov

(
ln Āi, ln λ̄ii

)
is at least the same order of magnitude as var (lnλii) − var

(
ln λ̄ii

)
in 99% of

swaps; it is an order of magnitude larger in 16%.
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Figure E.2: Location of ENSO sea-surface temperature measurements

Notes: ENSO indices defined as average sea surface temperature over a region minus the long-term mean sea surface
temperature for that region. Spatial definitions for standard ENSO indices: NINO4 (5◦S-5◦N, 160◦E-150◦W),
NINO3 (5◦S-5◦N, 150◦W-90◦W), NINO34 (5◦S-5◦N, 170◦W - 120◦W), and NINO12 (10◦S-0◦, 90◦W-80◦W).

Figure E.3: Monthly ENSO index for top 10 positive events
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Notes: Time evolution of monthly ENSO index 12 months before and after the 10 most positive ENSO events over
1961–2013. ENSO events occur during the winters of 1965, 1972, 1982, 1986, 1991, 1994, 1997, 2002, 2006, and 2009.
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Figure E.4: Observed log cereal yields and temperature in 2013
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Notes: Observed country-level log cereal yields in 2013 with cross-sectional mean removed plotted against temper-
ature in 2013. From equation (9), observed log cereal yield is sum of the nonlinear temperature relationship k(Tit),
controls Ψ′Xit, and the residual term νit. Vertical line shows the predicted log yield maximizing temperature from
Figure 10.

Figure E.5: Difference in projected outcomes due to spatial correlation vs. yield changes
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F Appendix tables

Table F.1: Statistical significance of first-stage coefficients

(1) (2) (3) (4) (5)

α′11 joint F-stat p-value 0.022 0.007 0.011 0.011 0.008
α′12 joint F-stat p-value 0.006 0.038 0.097 0.178 0.218
α′21 joint F-stat p-value 0.071 0.004 0.007 0.006 0.003
α′22 joint F-stat p-value 0.041 0.062 0.028 0.041 0.071

Number of temperature splines in f() 2 3 4 5 6
Observations 5452 5452 5452 5452 5452
Notes: Shows p-values from joint significance F-tests across the elements of each vector
of first-stage coefficients, α′11 and α′12 from equation (4), α′21 and α′22 from equation (5).
Columns 1–5 correspond to the IV specifications in columns 2–6 of Table 2.

Table F.2: Alternative error structures
Outcome is log domestic share of expenditure

(1) (2) (3) (4)

lnAit (β0) 2.114 2.114 2.114 2.114
(0.604) (0.581) (0.830) (0.698)
[0.001] [0.001] [0.014] [0.004]

lnAit × It (β1) -4.144 -4.144 -4.144 -4.144
(1.834) (1.659) (2.157) (1.939)
[0.028] [0.016] [0.060] [0.037]

Clustering year cluster year cluster year cluster year cluster
and 20 year HAC and cntry cluster

Bekker adjustment No No No Yes
Observations 5452 5452 5452 5452
Notes: Estimates of β0 and β1 from equation (3). Column 1 reproduces benchmark estimates from
column 4, panel B of Table 2 with year-level clustered standard errors. Column 2 allows year-level
clustering and common serial correlation across countries within a 20-year window. Column 3 allows year
and country-level clustering. Column 4 allows year-level clustering with a Bekker (1994) adjustment.
Standard errors in parentheses; p-values in brackets.
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Table F.3: Controlling for time-varying trade costs

Outcome is log domestic share of expenditure

(1) (2) (3) (4) (5) (6) (7)

lnAit (β0) 2.114 2.178 2.163 2.492 2.297 2.115 2.270
(0.604) (0.612) (0.593) (0.737) (0.641) (0.604) (0.796)
[0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.006]

lnAit × It (β1) -4.144 -4.254 -4.189 -4.748 -4.227 -4.145 -4.281
(1.834) (1.865) (1.825) (2.095) (1.844) (1.833) (1.985)
[0.028] [0.027] [0.026] [0.028] [0.026] [0.028] [0.036]

ln oil price × average ln λii Yes
ln oil price × centrality Yes
Year FE × average ln λii Yes
Year FE × centrality Yes
Export restrictions Yes
Precipitation Yes
Cragg-Donald F-stat 5.174 5.249 5.077 4.875 4.042 5.163 3.932
Stock-Yogo crit. value: 10% max LIML size 3.580 3.580 3.580 3.580 3.580 3.580 3.580
Kleibergen-Paap F-stat 3.963 3.911 3.903 4.146 3.523 3.967 3.497
Observations 5452 5452 5452 5452 5452 5452 5452

Notes: Estimates of β0 and β1 from equation (3). Column 1 replicates benchmark model from column 4, panel
B, of Table 2. Column 2 (3) controls for the interaction of global log oil price and cross-sectional average log
domestic share of expenditure (output-weighted inverse distance averaged across all other countries). Column 4
(5) controls for the interaction of year fixed effects and cross-sectional average log domestic share of expenditure
(output-weighted inverse distance averaged across all other countries). Column 6 controls for introductions of export
restrictions. Column 7 controls for quadratic precipitation terms. Standard errors, clustered by year, in parentheses;
p-values in brackets.

Table F.4: Sample splits
Outcome is log domestic share of expenditure

(1) (2) (3) (4)

lnAit (β0) 2.114 2.152 1.845 1.692
(0.604) (0.595) (2.807) (0.511)
[0.001] [0.001] [0.517] [0.003]

lnAit × It (β1) -4.144 -4.226 -4.639 -2.708
(1.834) (1.925) (12.564) (1.627)
[0.028] [0.033] [0.715] [0.108]

Include large producers? No Yes No No
Sample period 1961-2013 1961-2013 1961-1987 1988-2013
Cragg-Donald F-stat 5.174 5.020 1.628 3.810
Stock-Yogo crit. value: 10% max LIML size 3.580 3.580 3.580 3.580
Kleibergen-Paap F-stat 3.963 4.473 1.137 4.052
Anderson-Rubin weak-id robust joint p-value 0.000 0.000 0.000 0.000
Observations 5452 4952 2655 2793

Notes: Estimates of β0 and β1 from equation (3). Column 1 reproduces benchmark estimates from column 4,
panel B of Table 2. Column 2 excludes the following ten countries, which together account for more than half of
world cereal output in each year: China, United States, India, Former Soviet Union, France, Indonesia, Canada,
Brazil, Germany, and Bangladesh. Column 3 restricts sample to 1961–1987. Column 4 restricts sample to 1988–
2013. Standard errors, clustered by year, in parentheses; p-values in brackets.

81



Table F.5: Dynamic effects
Outcome is log domestic share of expenditure

(1) (2) (3) (4)

lnAit 2.217 1.326
(0.651) (0.634)
[0.001] [0.041]

lnAit × It -4.152 -3.233
(1.874) (1.590)
[0.031] [0.047]

lnAit+1 0.724
(0.503)
[0.156]

lnAit+1 × It+1 -0.830
(1.642)
[0.615]

lnAit−1 0.851
(0.526)
[0.112]

lnAit−1 × It−1 -2.039
(1.354)
[0.138]

2nd stage sample period 1962-2012 1962-2012 1962-2012 1961-2013
Include stored cereals? No No No Yes
Cragg-Donald F-stat 4.480 5.688 5.293 5.345
Stock-Yogo crit. value: 10% max LIML size 3.580 3.580 3.580 3.580
Kleibergen-Paap F-stat 3.632 2.592 3.532 3.622
Observations 5237 5236 5235 5191

Notes: Estimates of β0 and β1 from equation (3). Column 1 reproduces benchmark model using log yields in
year t instrumented by December ENSO in years t and t− 1 and local temperature in year t. Column 2 uses log
yields in year t + 1, instrumented by December ENSO conditions in years t + 1 and t and local temperature in
year t+ 1. Column 3 uses log yields in year t− 1, instrumented by December ENSO conditions in years t− 1 and
t− 2 and local temperature in year t− 1. Column 4 uses log yields in year t to examine effects on a measure of
domestic share of expenditure that includes stored cereals. Sample period for 2nd stage equation is 1962–2012 for
columns 1-3 and 1961–2013 for column 4. Standard errors clustered by year in parentheses; p-values in brackets.
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Table F.6: ENSO and local temperature definitions
Outcome is log domestic share of expenditure

(1) (2) (3) (4)

Panel A: Crop-area-weighted country temperature

lnAit (β0) 2.114 2.108 2.084 2.722
(0.604) (0.715) (0.706) (0.987)
[0.001] [0.005] [0.005] [0.008]

lnAit × It (β1) -4.144 -4.064 -4.465 -6.026
(1.834) (2.414) (2.406) (3.127)
[0.028] [0.098] [0.069] [0.059]

ENSO index 4 3 34 12
Cragg-Donald F-stat 5.174 5.013 5.195 3.781
Stock-Yogo crit. value: 10% max LIML size 3.580 3.580 3.580 3.580
Kleibergen-Paap F-stat 3.963 2.897 3.993 2.333
Observations 5452 5452 5452 5452

Panel B: Total-area-weighted country temperature

lnAit (β0) 1.632 1.722 1.562 1.871
(0.500) (0.626) (0.597) (0.729)
[0.002] [0.008] [0.012] [0.013]

lnAit × It (β1) -3.960 -4.125 -4.155 -4.517
(1.617) (2.155) (2.071) (2.331)
[0.018] [0.061] [0.050] [0.058]

ENSO index 4 3 34 12
Cragg-Donald F-stat 4.423 3.928 4.186 3.103
Stock-Yogo crit. value: 10% max LIML size 3.580 3.580 3.580 3.580
Kleibergen-Paap F-stat 3.490 2.653 3.344 1.957
Observations 5605 5605 5605 5605
Notes: Estimates of β0 and β1 from equation (3). Panel A uses crop-area-weighted country-level
temperatures. Panel B uses total-area-weighted country-level temperatures. Columns 1 to 4 use
NINO4, NINO3, NINO34, and NINO12 as ENSO index. Standard errors, clustered by year, in
parentheses; p-values in brackets.
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Table F.7: Using spatial correlation of temperature instead of ENSO
Outcome is log domestic share of expenditure

(1) (2) (3) (4) (5)

lnAit (β0) 2.486 2.540 1.918 1.647 1.686
(1.310) (1.182) (0.600) (0.618) (0.624)
[0.063] [0.036] [0.002] [0.010] [0.009]

lnAit × It (β1) -5.044 -5.135 -3.092 -2.348 -2.394
(4.173) (4.011) (1.884) (1.943) (2.021)
[0.232] [0.206] [0.107] [0.232] [0.241]

Number of temperature splines in f 2 3 4 5 6
Temperature Moran’s I polynomial order in g 1 1 1 1 1
Number of instruments 4 6 8 10 12
Cragg-Donald F-stat 6.407 5.267 6.161 5.428 4.846
Stock-Yogo crit. value: 10% max 2SLS bias 7.560 9.480 10.220 10.580 10.780
Stock-Yogo crit. value: 10% max 2SLS size 16.870 21.680 25.640 29.320 32.880
Stock-Yogo crit. value: 10% max LIML size 4.720 4.060 3.780 3.640 3.580
Kleibergen-Paap F-stat 2.813 2.217 2.145 2.389 2.061
BIC for first stage equations -30779.0 -30789.6 -30873.7 -30862.6 -30845.5
Observations 5452 5452 5452 5452 5452

Notes: LIML estimates of β0 and β1 from equation (3) with g(ENSOt + ENSOt−1) in first-stage
equations (4) and (5) replaced with the annual global spatial correlation of temperature, It(Tit). Columns
show estimates that vary by the number of temperature spline terms in f(). All models include country
fixed effects, year fixed effects, and country-specific linear trends as included instruments. Standard
errors, clustered by year, in parentheses; p-values in brackets.

Table F.8: Alternative domestic expenditure share constructions

Outcome is log domestic share of expenditure

(1) (2) (3) (4) (5) (6)

lnAit (β0) 2.114 1.365 1.825 1.568 1.249 1.867
(0.604) (0.397) (0.559) (0.432) (0.430) (0.536)
[0.001] [0.001] [0.002] [0.001] [0.005] [0.001]

lnAit × It (β1) -4.144 -3.068 -3.622 -2.835 -2.452 -3.520
(1.834) (1.423) (1.585) (1.337) (1.152) (1.549)
[0.028] [0.036] [0.026] [0.039] [0.038] [0.027]

Price data FAO FAO FAO FAO Comtrade FAO
Price imputation average export+ lowest highest average average

export producer export export export export
Drop outliers? No No No No No 1%
Cragg-Donald F-stat 5.174 8.049 5.174 5.174 5.346 5.259
Stock-Yogo crit. value: 10% max LIML size 3.580 3.580 3.580 3.580 3.580 3.580
Kleibergen-Paap F-stat 3.963 3.864 3.963 3.963 2.406 3.832
Observations 5452 2918 5452 5452 4148 5366
Notes: Estimates of β0 and β1 from equation (3). Column 1 reproduces benchmark estimates from column 4,
panel B of Table 2 with average export-volume-weighted cereal export unit value used for imputing cereal-level
prices in constructing domestic expenditure share. Column 2 uses cereal-level export unit values with missing
observations imputed using producer prices to construct domestic expenditure. Columns 3 and 4 use cereal-level
export unit values with missing observations imputed using the lowest and highest observed export unit value for
a given country and year, respectively. Column 5 replicates column 1 but constructs domestic expenditure share
using Comtrade bilateral trade data instead of FAO trade data. FAO trade data available for 1961–2013. Comtrade
data available for 1962–2013. Column 6 replicates column 1 but drops observations with outcome variable being
in the bottom and top 1% of distribution. Standard errors, clustered by year, in parentheses; p-values in brackets.
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Table F.9: Testing for heterogeneity in cereal-specific first-stage coefficients

Barley Maize Millet Oats Rice Rye Sorghum Wheat

First-stage equation (4)

Temp. 1st term 1 1 1 1 1 1 1 .7
Temp. 2nd term 1 1 1 1 .048 1 1 1
Temp. 3rd term 1 1 1 1 2.3e-04 1 1 .33
Temp. 4th term 1 1 1 1 5.4e-03 1 1 .41
Temp. 1st term X (ENSOt + ENSOt−1) 1 1 1 1 1 1 1 1
Temp. 2nd term X (ENSOt + ENSOt−1) 1 1 1 1 1 1 1 1
Temp. 3rd term X (ENSOt + ENSOt−1) 1 1 1 1 1 1 1 1
Temp. 4th term X (ENSOt + ENSOt−1) 1 1 1 1 1 1 1 1
Temp. 1st term X (ENSOt + ENSOt−1)2 1 1 1 1 1 1 1 1
Temp. 2nd term X (ENSOt + ENSOt−1)2 1 1 1 1 1 1 1 1
Temp. 3rd term X (ENSOt + ENSOt−1)2 1 1 1 1 1 1 1 1
Temp. 4th term X (ENSOt + ENSOt−1)2 1 1 1 1 1 1 1 1

First-stage equation (5)

Temp. 1st term 1 1 1 1 1 1 1 .32
Temp. 2nd term 1 1 1 1 .45 1 1 1
Temp. 3rd term 1 1 1 1 .015 1 1 .11
Temp. 4th term .87 1 1 1 .19 1 1 .095
Temp. 1st term X (ENSOt + ENSOt−1 ) 1 1 1 1 1 1 1 1
Temp. 2nd term X (ENSOt + ENSOt−1 ) 1 1 1 1 1 1 1 .33
Temp. 3rd term X (ENSOt + ENSOt−1 ) 1 1 1 1 1 .57 1 .76
Temp. 4th term X (ENSOt + ENSOt−1 ) 1 1 .6 1 1 1 .74 1
Temp. 1st term X (ENSOt + ENSOt−1 )2 1 1 1 1 1 1 1 1
Temp. 2nd term X (ENSOt + ENSOt−1 )2 1 1 1 1 1 1 1 1
Temp. 3rd term X (ENSOt + ENSOt−1 )2 1 1 1 1 1 1 1 1
Temp. 4th term X (ENSOt + ENSOt−1 )2 1 1 1 1 1 1 1 1

Notes: This table reports the p-values from tests that the coefficients from estimating first-stage equations (4)
and (5) for cereal-specific yields for the cereal listed in each column are equal to the coefficients in our benchmark
first-stage estimates for aggregate cereal yields. The p-values of these pairwise cross-model tests incorporate a
Bonferroni correction for multiple-hypothesis testing.
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Table F.10: Log cereal yield and local temperature
Outcome is log cereal yields

(1) (2) (3) (4) (5) (6)

Temperature 1st term 0.004 0.004 0.005 0.005 0.007 0.005
(0.009) (0.009) (0.010) (0.010) (0.011) (0.011)
[0.686] [0.677] [0.629] [0.631] [0.519] [0.623]

Temperature 2nd term -0.183 -0.165 -0.222 -0.203 -0.126 -0.100
(0.041) (0.040) (0.071) (0.071) (0.060) (0.059)
[0.000] [0.000] [0.003] [0.006] [0.041] [0.093]

Temperature 3rd term 0.650 0.599 0.418 0.393 0.020 -0.031
(0.160) (0.159) (0.196) (0.196) (0.212) (0.205)
[0.000] [0.000] [0.038] [0.050] [0.924] [0.882]

Temperature 4th term -1.162 -1.100 0.356 0.248 1.320 1.394
(0.533) (0.539) (0.649) (0.644) (0.674) (0.658)
[0.034] [0.047] [0.586] [0.702] [0.056] [0.039]

Temperature 5th term -2.204 -1.801 -2.895 -3.370
(1.775) (1.760) (1.880) (1.864)
[0.220] [0.311] [0.130] [0.076]

Temperature 6th term 1.830 3.213
(3.814) (3.791)
[0.633] [0.401]

Precipitation 0.003 0.003 0.003
(0.001) (0.001) (0.001)
[0.000] [0.000] [0.000]

Precipitation squared -0.000 -0.000 -0.000
(0.000) (0.000) (0.000)
[0.000] [0.000] [0.000]

Number of temperature splines 4 4 5 5 6 6
Precipitation No Yes No Yes No Yes
Temp. joint p-value 0.0004 0.0014 0.0009 0.0030 0.0015 0.0049
Optimal temp. 8.81 8.91 8.87 8.94 7.80 7.70
Observations 7226 7226 7226 7226 7226 7226
Notes: Estimates of cubic spline terms for k() in equation (9) during 1961–2013. The number of knots
placed along the temperature support according to Harrell (2001) varies across columns. Odd (even)
numbered columns exclude (include) quadratic precipitation terms. P-value from a joint significance test
of temperature terms shown. Standard errors, clustered by year, in parentheses; p-values in brackets.
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