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Abstract

What determines the distributions of skills, occupations, and industries across

cities? We develop a theory to jointly address these fundamental questions about

the spatial organization of economies. Our model incorporates a system of cities, their

internal urban structures, and a high-dimensional theory of factor-driven comparative

advantage. It predicts that larger cities will be skill-abundant and specialize in skill-

intensive activities according to the monotone likelihood ratio property. We test the

model using data on 270 US metropolitan areas, 3 to 9 educational categories, 22 oc-

cupations, and 19 industries. The results provide support for our theory’s predictions.
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1 Introduction

The level of economic activity varies considerably across cities. This motivates the study

of the agglomeration forces that give rise to concentration. The composition of economic

activity also varies considerably across cities. This is evident from Forbes ranking “America’s

smartest cities” and the use of place names like Wall Street and Silicon Valley as shorthand

for industries. Who lives in more productive cities and what they do there should inform

our understanding of how agglomeration economies work. But most theories of cities, to the

extent that they consider the spatial distributions of skills and sectors, are dichotomous in

nature: individuals are either skilled or unskilled and cities either perform one function or all

functions. These low-dimensional accounts are not well suited to interpret data exhibiting

much richer variation.

What governs the distributions of skills and sectors across cities? Who lives where and

what do they do there? These are challenging questions. In this paper, we develop an

analytic approach we term the comparative advantage of cities. Our aim is to provide the

simplest theoretical framework capable of providing unified answers to these questions and

then to take our model’s predictions to the data. We introduce a model of many cities, many

skills, and many sectors, and we show that it fits the cross-section of US cities well.

In our spatial-equilibrium model, the comparative advantage of cities is jointly governed

by the comparative advantage of individuals and their locational choices. Cities are symmet-

ric ex ante, so cross-city heterogeneity is an emergent outcome. Agglomeration economies

make cities with larger, more skilled populations exhibit higher total factor productivity

(TFP). Locations within cities exhibit heterogeneity in their innate desirability, as is cus-

tomary in land-use models (Fujita and Thisse, 2002, Ch 3). These cities are populated by

heterogeneous individuals with a continuum of skill types, and these individuals may be

employed in a continuum of sectors. Comparative advantage causes more skilled individu-

als to work in more skill-intensive sectors, as in Ricardo-Roy models (Costinot and Vogel,

2015). While those models of international trade assume exogenous endowments, we study

the comparative advantage of cities in an environment in which cities’ factor supplies are

endogenously determined by the choices of mobile individuals. There is a complementarity

between individual income and locational attractiveness, so more skilled individuals are more

willing to pay for more attractive locations and occupy these locations in equilibrium, as in

the differential-rents model of Sattinger (1979).

In equilibrium, agglomeration, individuals’ comparative advantage, and locational het-

erogeneity within cities combine to deliver a rich set of novel predictions. Agglomeration

causes larger cities to have higher TFP, which makes a given location within a larger city
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more attractive than a location otherwise of the same innate desirability within a smaller

city. For example, the best location within a larger city is more attractive than the best

location within a smaller city due to the difference in TFP. Since more skilled individuals oc-

cupy more attractive locations, larger cities are skill-abundant. The most skilled individuals

in the population live only in the largest city and more skilled individuals are relatively more

prevalent in larger cities. By individuals’ comparative advantage, the most skill-intensive

sectors are located exclusively in the largest cities and larger cities specialize in the produc-

tion of skill-intensive output. Our model therefore predicts an urban hierarchy of skills and

sectors. Under slightly stronger assumptions, larger cities will be absolutely larger in all

sectors.

As we discuss in Section 2, prior theories describing cities’ sectoral composition have

overwhelmingly focused on the polar cases in which cities are either completely specialized

“industry towns” or all produce the same composite output. The former is starkly at odds

with the data, while the latter makes no substantive prediction. Our theory predicts that

cities are incompletely specialized across sectors due to incomplete skill sorting: the trade-

off between city-level TFP differences and within-city locational desirability differences can

make individuals of a given skill level indifferent between locations in different cities. At the

same time, our model relates the pattern of specialization to cities’ observable characteristics.

It makes strong, testable predictions about the distributions of skills and sectors across cities.

We examine the model’s predictions about the distribution of skills and sectors across

US cities using data from the 2000 Census of Population, County Business Patterns, and

Occupational Employment Statistics described in Section 4. We use two empirical approaches

to characterize cities’ skill and sectoral distributions. The first regresses a city’s log sectoral

employment on its log total population. More skilled groups and more skill-intensive sectors

should exhibit higher population elasticities. The second examines whether the distributions

exhibit the monotone likelihood ratio property, as per Costinot (2009), by comparing a pair

of skills or sectors across a pair of cities.1 For example, comparing two cities and two

sectors, the skill-intensive sector should have relatively larger employment in the larger city.

To characterize sectoral size, we simply compare sectors’ employment levels across cities.

Section 5 reports the results, which provide support for our model’s predictions about

the pattern of skills and sectors across cities. Characterizing skills in terms of three or nine

educational groups, we find that larger cities are skill-abundant. Characterizing sectors in

terms of 19 industrial categories or 22 occupational categories, we find that larger cities

specialize in skill-intensive sectors. Our model’s predictions are generally borne out by the

data and are statistically significant. If deviations from our model’s predictions are idiosyn-

1The distribution fc(σ) likelihood ratio dominates fc′(σ) if, for any σ > σ′, fc(σ)
fc′ (σ)

≥ fc(σ
′)

fc′ (σ
′) .
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cratic rather than systematic, the empirical success rate should increase with aggregation

over groups of cities. This is indeed the case. There is systematic variation in cities’ skill

and sectoral distributions that is consistent with the predictions of our theory.

Our account of the distributions of skills and sectors across cities has implications for

both research and policy. We find systematic sorting of finely differentiated educational

attainment levels across cities. This means that researchers examining spatial variation in

binary college/non-college terms report outcomes that partly reflect cross-city compositional

differences within these broad educational categories. Similarly, we find that a city’s sec-

toral composition is systematically related to its population size. This means that research

designs exploiting cross-city variation in sectoral composition, à la Bartik (1991), that do

not control for population size are relying upon size-driven variation, not just idiosyncratic

circumstances, for identification. Our model also has potentially interesting implications for

welfare. For example, our model of spatial sorting across locations means that biased techni-

cal change has asymmetric welfare consequences. In our setting, skill-biased technical change

raises attractive locations’ rental prices without increasing less attractive locations’ prices,

while unskilled-biased technical change raises rental prices everywhere. Finally, due to the

most skilled individuals residing only in the largest cities, the range of skills and thus the

range of welfare is greater in larger cities. These differences likely shape local policymakers’

challenges and choices.

In sum, we develop a theory of the distributions of skills and sectors across cities of dif-

ferent sizes and show that it fits the US data well. The model combines elements of urban

land-use theory and assignment models of comparative advantage. These are a natural foun-

dation for a theory of a system of cities because locational heterogeneity within and across

cities leads the distribution of skills to exhibit the monotone likelihood ratio property. This

arises not by assumption but instead as an emergent property of the equilibrium that brings

in its wake similar implications for the distribution of sectors. This high-dimensional theory

provides a basis for what is, relative to the prior literature, a richer empirical examination

of the distributions of skills, occupations, and industries across cities of different sizes.

2 Related literature

Our contributions are related to a diverse body of prior work. Our focus on high-dimensional

labor heterogeneity is related to recent developments in labor and urban economics. Our the-

oretical approach integrates elements from the systems-of-cities literature, land-use theory,

and international trade. Our model yields estimating equations and pairwise inequalities de-

scribing the comparative advantage of cities that are related to prior reduced-form empirical
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work in urban economics, despite a contrast in theoretical underpinnings.

Our theory describes a continuum of heterogeneous individuals. A large share of systems-

of-cities theories describe a homogeneous population (Abdel-Rahman and Anas, 2004). Most

previous examinations of heterogeneous labor have only described two skill levels, typically

labeled skilled and unskilled.2 Understanding the distribution of skills across cities with

more than two homogeneous types is valuable for a number of reasons. First, a prominent

literature in labor economics has emphasized the need to move beyond models with just two

homogeneous skill groups if we want to understand important empirical developments such as

wage polarization, job polarization, and simultaneous changes in between- and within-group

inequality (Acemoglu and Autor, 2011). Second, using only two skill groups is problematic

for understanding spatial variation in relative prices and quantities. The relative price of

skill varies across cities, as documented by Baum-Snow and Pavan (2013) and Davis and

Dingel (2019), and this is inconsistent with standard spatial-equilibrium models with two

homogeneous skill types and homothetic preferences.3 The relative quantity of skill varies

across cities, but whether this cross-city variation predicts city growth depends on how the

researcher partitions educational attainment into two skill groups.4

To overcome the difficulties of interpreting the world through a two-skill model, we assume

a continuum of skills, like the spatial models in Behrens, Duranton, and Robert-Nicoud

(2014) and Davis and Dingel (2019). Relative to those papers, we introduce multiple tradable

sectors so that we can analyze the pattern of sectoral specialization, and we introduce intra-

city geographic heterogeneity that causes cities’ skill distributions to overlap rather than

exhibit strict sorting.

Our model integrates systems-of-cities theory with land-use theory. The canonical model

of land rents is one in which locations within a city have heterogeneous innate desirability

(Fujita and Thisse, 2002, Ch 3). Prior models of a system of cities have only incorporated

urban structure as a city-level congestion mechanism, assuming that in equilibrium indi-

viduals are indifferent across all locations within a city (Abdel-Rahman and Anas, 2004;

2A long line of empirical work describes cross-city variation in the share of residents who have a college
degree (Glaeser, 2008). Most closely related to our work is Hendricks (2011), who finds a weak relationship
between cities’ industries and college shares. We focus on theories in which labor is heterogeneous in an
asymmetric sense (e.g., more skilled individuals have absolute advantage in tasks or more skilled individuals
generate greater human-capital spillovers). There are also models describing matching problems, such as
Helsley and Strange (1990) and Duranton and Puga (2001), in which labor is heterogeneous in a horizontal
dimension.

3Reconciling this fact with a two-skill model would require a departure from homotheticity such that
more skilled people find large cities less attractive than the less skilled. This is at odds with results on both
income-specific price indices (Handbury, 2012) and endogenous amenities (Diamond, 2016).

4Both Baum-Snow, Freedman, and Pavan (2017) and Diamond (2016) use two skill groups, but they
report contrasting results about cities’ divergence in skills over time due to contrasting assignments of the
“some college” population to “skilled” and “unskilled”, respectively.
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Behrens, Duranton, and Robert-Nicoud, 2014). Our model describes multiple cities with

internal geographies when individuals’ valuations of locations within cities differ systemati-

cally by income. The essential idea is that individuals choosing between living in Chicago or

Des Moines simultaneously consider in what parts of Chicago and what parts of Des Moines

they might locate.

Considering both dimensions simultaneously is more realistic in both the description of

the economic problem and the resulting predicted cross-city skill distributions. Large cities

like Chicago contain very heterogeneous neighborhoods, and within cities higher-income

individuals tend to choose more attractive, more expensive locations. The complementarity

of skills and city size alone would lead to perfect sorting across cities by skill if there were

indifference within cities. Adding the dimension that agents sort by the innate desirability

of locations within cities means that individuals of a given skill level are found in many cities

in equilibrium. This is more realistic than generating such overlap by simply perturbing

perfect sorting with idiosyncratic noise, since that approach would yield no relationship

between individuals’ incomes and their housing prices.

In our theory, we assume heterogeneity in the innate desirability of locations within each

city without imposing a particular geography. We assume two restrictions on the relevant

heterogeneity. First, the distribution of innate locational desirability within each potential

city is ex ante identical, consistent with our aim of characterizing an emergent equilibrium.

Second, for our key theoretical results, this distribution must exhibit a regularity condition

introduced in subsection 3.4. Thus, we follow the long tradition of treating the distribution

of the innate desirability of locations as exogenous, without assuming a functional form. We

show that our model makes predictions about the distribution of land prices consistent with

available evidence while being sufficiently flexible to accommodate a number of potential

spatial configurations. While we think heterogeneous valuations of distinct locations within

cities is an important subject in its own right, it also involves considerable complications, as

made clear by Duranton and Puga (2015), so in the present paper we limit our inquiry in

this dimension.

Our model belongs to a long theoretical tradition describing factor-supply-driven com-

parative advantage, as in the two-good-two-factor Heckscher-Ohlin theory formalized by

Samuelson (1948). In international contexts, theorists have typically taken locations’ factor

supplies as exogenously endowed. Since individuals are mobile across cities, our theory endo-

genizes cities’ factor supplies while describing how the composition of output is governed by

comparative advantage. Our approach to comparative advantage with a continuum of factors

and a continuum of sectors follows a large assignment literature and is most closely related
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to Costinot (2009).5 To obtain definite results about the distribution of outputs across coun-

tries, Costinot (2009) assumes that the exogenous distribution of factor endowments across

countries satisfies the monotone likelihood ratio property. Any economic mechanism that

might generate that pattern is beyond the scope of his theory. By contrast, in the present

paper the fact that the distribution of skills across cities satisfies this property is a result

rather than an assumption. Similarly, while factor endowments, country size, and country

productivity are independent in Costinot (2009), they are closely linked in our model such

that the distribution of endowments is tied to an observable characteristic, city size. Thus,

from a theoretical perspective, cities within a country constitute a natural setting to examine

these theories of comparative advantage. Moreover, the assumption of a common production

technology is likely more appropriate within than between economies, and data from a single

economy are likely more consistent and comparable than data combined across countries.6

The Heckscher-Ohlin model has been the subject of extensive empirical investigation in

international economics. A pair of papers describe regional outputs using this framework.

Davis and Weinstein (1999) run regressions of regional outputs on regional endowments,

employing the framework of Leamer (1984), but they abstract from the issue of labor mo-

bility across regions. Bernstein and Weinstein (2002) consider the two-way links between

endowments and outputs, concluding that if we know regions’ outputs, we know with con-

siderable precision the inputs used, but not vice versa. We move beyond these papers in two

important respects. First, cities’ factor supplies are a feature to be explained. Second, our

model leads us to explore a dimension of the data not even contemplated in the prior work,

namely that the endogenously determined size of the city is itself systematically related to

skill and sectoral structure.

Our theory predicts systematic variation in sectoral composition in the form of an urban

hierarchy of sectors. Prior systems-of-cities theories have overwhelmingly described sectoral

composition in polarized terms (Abdel-Rahman and Anas, 2004).7 One class of models

5Sattinger (1993) and Costinot and Vogel (2015) survey the assignment literature. While it might seem
that cities abundant in skilled labor must employ those factors in skill-intensive sectors, factor market
clearing alone does not imply such a result. There is considerable distance between factor supplies and
production outcomes in a high-dimensional environment, and mild assumptions tend to deliver weak results,
as established by Jones and Scheinkman (1977) and Ethier (1984). Indeed, Costinot (2009) focuses precisely
on establishing conditions sufficient to tightly link factor supplies to production outcomes.

6In our spatial-equilibrium setting, we make assumptions such that the sectoral assignment function is
common across cities, as explained in our discussions of Lemma 5 and Proposition 1.

7An exception is central place theory, and our model relates to that theory’s results in interesting ways.
Our model’s equilibrium exhibits a hierarchy of cities and sectors, as larger cities produce a superset of the
goods produced in smaller cities. Models in central place theory, dating from Christaller (1933) through Hsu,
Holmes, and Morgan (2014), have attributed this hierarchy property to the interaction of industry-specific
scale economies and geographic market access based on the distance between firms located in distinct city
centers. Our model yields the hierarchy property in the absence of both. Our theory links the hierarchy of
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develops explicitly multi-sector economies in which each city specializes in a single traded

good due to external economies of scale that are sector-specific.8 In a complementary class

of models, cities produce a single composite output, which may be interpreted as perfect

diversification without specifying sectors’ relative sizes. Neither complete specialization nor

perfect diversification provides a propitious starting point for empirical investigations.

The small empirical literature describing variation in cities’ sectoral composition is there-

fore only loosely informed by theory. For example, Holmes and Stevens (2004) survey the

spatial distribution of economic activities in North America. They show that agriculture,

mining, and manufacturing are disproportionately in smaller cities, while finance, insurance,

real estate, professional, and management activities are disproportionately in larger cities.

However, they do not reference a model or theoretical mechanism that predicts this pat-

tern to be an equilibrium outcome. Similarly, Henderson (1983, 1991) reports regressions of

employment shares on population sizes. These are motivated by theories of specialization

linked to city size, but the regression specifications don’t follow directly from those models.

Our theory provides an explicit and distinct microfoundation for these regressions for an

arbitrary number of sectors. Moreover, it predicts that the estimated population elasticities

will be ordered by skill intensity.

A recent exception to the polarized view of sectoral specialization is Helsley and Strange

(2014), who examine whether the equilibrium level of coagglomeration is efficient. Our papers

have quite distinct objectives. While Helsley and Strange (2014) make minimal assumptions

in order to demonstrate that Nash equilibria are generically inefficient when there are in-

terindustry spillovers, we make strong assumptions that yield testable implications about

the distribution of sectoral activity across cities. This account of cities’ sectoral composi-

tion may inform a broader body of empirical work using sectoral composition as a source of

identifying variation.9

In addition to sectoral composition, our theory describes sectoral size. Theories of local-

ization and urbanization economies have contrasting predictions for cities’ absolute employ-

ment levels.10 In the canonical model of pure localization in Henderson (1974), specialized

sectors to a hierarchy of skills shaped by the internal geography of cities, neither of which has been considered
in central place theory.

8Though Henderson (1974) characterizes the case of single-industry specialized cities, he suggests that
“cities will probably specialize in bundles of goods, where, within each bundle, the goods are closely linked
in production.”

9A number of papers in urban economics posit theoretical models with no sectoral specialization, in
which all locations produce a homogeneous good, yet empirically estimate the model parameters exploiting
cross-city variation in industrial structure (Diamond, 2016; Notowidigdo, 2013; Yagan, 2014). Our multi-
sector model links sectoral composition to city size and skill composition. We hope this framework may help
interpret such variation and accompanying identifying assumptions.

10The literature traditionally distinguishes two types of external economies of scale (Henderson, 1987,
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cities of different sizes host different sectors, yielding “textile cities” and “steel cities”. Sec-

toral specialization is the very basis for the city-size distribution, and one wouldn’t expect

large cities to be larger in all sectors. By contrast, urbanization models with a composite

output make no prediction about spatial variation in sectoral composition. Our paper both

introduces a multi-sector urbanization model in which larger cities are relatively larger in

skill-intensive sectors and identifies conditions under which larger cities are absolutely larger

in all sectors.

A recent empirical literature has demonstrated significant agglomeration and coagglom-

eration of industries relative to the null hypothesis of locations being (uniformly) randomly

assigned in proportion to local population (Ellison and Glaeser, 1997; Duranton and Over-

man, 2005; Ellison, Glaeser, and Kerr, 2010). Our model’s predictions are consistent with

these findings. Since our theory says that sectors are ranked in terms of their relative employ-

ment levels, at most one sector could exhibit employment proportionate to total population.

All other sectors will exhibit geographic concentration. Similarly, since sectors more similar

in skill intensity will exhibit more similar relative employment levels, the cross-city distri-

bution of sectoral employment will be consistent with skill-related coagglomeration. Prior

studies have interpreted the agglomeration and coagglomeration of industries as evidence

of within-industry and industry-pair-specific interactions or spillovers. In our framework,

significant measured agglomeration and coagglomeration will arise even absent these forces.

In sum, we know of no prior spatial-equilibrium theory that makes the predictions yielded

by our model. Guided by our theoretical framework, our empirical investigation documents

a cross-city pattern of skills-driven comparative advantage not revealed by prior empirical

work.

3 Model

We develop a general-equilibrium model that makes predictions about the distributions of

skills and sectors across cities of different sizes. The theory has few moving parts. Individuals

vary in skill levels, and skills govern comparative advantage across sectors. Cities are identical

ex ante, but agglomeration forces produce asymmetric cities of different sizes that differ in

their equilibrium composition of skills and sectors of varying skill intensity.

Individuals freely choose their production sector, a city, and a location within that city.

The sector that a person of a given skill type chooses to work in depends on goods prices but

p.929). Localization economies are within-industry, reflecting the scale of activity in that industry in that
location. Urbanization economies are general, reflecting the scale of all economic activity in a location.
Beyond scale, Lucas (1988) has stressed the composition of a location’s human capital. The agglomeration
process generating city-level productivities in our theory incorporates both scale and composition effects.
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is independent of locational choices. The pattern of locational choices reflects the fact that

a location can be more attractive if it is in a city with higher TFP or in a more desirable

location within a given city. Facing this tradeoff, individuals are indifferent to the relative

contributions of these two margins to a scalar index of attractiveness. In equilibrium, all

locations of a given attractiveness are occupied by individuals of the same skill level, who are

all employed in the same sector. There is thus an isomorphism between the distribution of

locational attractiveness across cities and the distributions of skills and sectors across cities.

Since equally attractive locations can be found in multiple cities, cities’ skill and sectoral

distributions exhibit overlap rather than strict sorting.

We develop two propositions. Proposition 1 has three key elements. The first identifies

a regularity condition under which the distribution of locational attractiveness across cities

is log supermodular. The second shows that this regularity condition implies that skills and

sectoral employment are also log supermodular. The third says the same for sectoral outputs

and revenues. In simple terms, Proposition 1 says that larger cities will be skill abundant

and specialize in skill-intensive sectors. Proposition 2 addresses variation in the absolute

(not only relative) size of skills and sectors across cities. It provides a (stronger) regularity

condition sufficient for all skills and all sectors to be absolutely larger in larger cities. These

two propositions provide the foundation for our empirical work in Section 5.

3.1 Preferences, production, and places

A measure L of heterogeneous individuals choose a city, a location within that city, and

a sector in which to produce. There are discrete city sites, a continuum of skills, and

a continuum of sectors. As in Davis and Dingel (2019), our model features symmetric

fundamentals, but skill-biased agglomeration generates cities of heterogeneous sizes.

Individuals consume a freely traded final good. This final good is the numeraire and

produced by combining a continuum of freely traded, labor-produced intermediate goods

indexed by σ ∈ Σ ≡ [σ, σ̄]. These have prices p(σ) that are independent of city c because

trade costs are zero. Locations are characterized by their city c and their (inverse) innate

desirability τ ∈ T ≡ [0,∞), so they have rental prices r(c, τ). In the main text, desirability

stems from productivity benefits, while Appendix A.2 covers the case in which a location’s

desirability stems from its amenity value.11

11These productivity and amenity interpretations of desirability differ slightly in functional form but yield
the same predictions for the quantities that we examine empirically. For expositional clarity, we employ
the productivity interpretation in the main text. As discussed further below, the canonical model of a
monocentric city with commuting costs is a special case of our very general framework. In the amenity
interpretation, higher-income individuals are more willing to pay for better amenities. Future work should
seek to empirically identify which features within cities govern locational desirability.
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Final-goods producers have a CES production function

Q =
{∫

σ∈Σ

B(σ)[Q(σ)]
ε−1
ε dσ

} ε
ε−1
, (1)

where Q(σ) ≥ 0 is the quantity of intermediate good σ, ε > 0 is the elasticity of substitution

between intermediates, and B(σ) > 0 is an exogenous technological parameter. The profits

of final-goods producers are given by

Π = Q−
∫
σ∈Σ

p(σ)Q(σ)dσ. (2)

Heterogeneous individuals use their labor to produce intermediate goods. There is a

measure of L > 0 heterogeneous individuals with skills ω that have the cumulative distri-

bution function F (ω) and density f(ω) > 0 on support Ω ≡ [ω, ω̄]. The productivity of an

individual of skill ω in sector σ who chooses location τ in city c is

q(c, τ, σ;ω) = A(c)T (τ)H(ω, σ). (3)

A(c) ≥ 0 denotes city-level total factor productivity, which results from agglomeration and

is taken as given by individuals. T (τ) ≥ 0 reflects the productivity effects of location within

the city. We assume that T (τ) is continuously differentiable and decreasing, so that higher-τ

locations are less desirable. We assume that the twice-differentiable function H(ω, σ) ≥ 0

is strictly log-supermodular in ω and σ and strictly increasing in ω.12 The former governs

comparative advantage, so that higher-ω individuals are relatively more productive in higher-

σ sectors.13 The latter says that absolute advantage is indexed by ω, so that higher-ω

individuals are more productive than lower-ω individuals in all sectors. Each individual

inelastically supplies one unit of labor, so her income is her productivity times the price of

the output produced, q(c, τ, σ;ω)p(σ).

Locations within each city are heterogeneous, with the innate desirability of a location

indexed by τ ≥ 0. The most desirable location is denoted τ = 0, and higher values of τ denote

less desirable places.14 The supply of locations with innate desirability of at least τ is S(τ).

This is a strictly increasing function, since the supply of available locations increases as one

12In R2, a function H(ω, σ) is strictly log-supermodular if ω > ω′, σ > σ′ ⇒ H(ω, σ)H(ω′, σ′) >
H(ω, σ′)H(ω′, σ).

13We refer to higher-ω individuals as more skilled and higher-σ sectors as more skill-intensive.
14For example, in the canonical monocentric-city model in which everyone works in the central business

district and commuting to the center costs time, τ describes the residential location’s physical distance from
the center, T (τ) is labor time net of commuting, and the supply of locations is S(τ) = πτ2. In our model,
τ captures a wide variety of exogenous amenities that vary across locations within a city, but that provide
a common distribution of the innate desirability of locations across cities. While the main text takes the
supply of heterogeneous locations S (τ) as exogenously given, Appendix A.4 endogenizes it.
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lowers one’s minimum standard of innate desirability. S(0) = 0, since there are no locations

better than the ideal. We assume S(τ) is twice continuously differentiable. Locations are

owned by absentee landlords who spend their rental income on the final good.15 The city has

sufficient land capacity that everyone can reside in the city and the least desirable locations

are unoccupied. We normalize the reservation value of unoccupied locations to zero, so

r(c, τ) ≥ 0.

Individuals choose their city c, location τ , and sector σ to maximize utility. An individ-

ual’s utility depends on their consumption of the numeraire final good, which is their income

after paying their locational cost:

U(c, τ, σ;ω) = A(c)T (τ)H(ω, σ)p(σ)− r(c, τ). (4)

Denote the endogenous quantity of individuals of skill ω residing in city c at location τ and

working in sector σ by L× f(ω, c, τ, σ).

City-level TFP, A(c), reflects agglomeration gains derived from both population size and

composition. Note that city sites are ex ante identical: city-level TFPs differ in equilibrium

due to individuals’ locational choices. A(c) is higher when a city contains a larger and more

skilled population. Denote the endogenous quantity of individuals of skill ω residing in city

c by L× f(ω, c) ≡ L×
∫
σ∈Σ

∫
τ∈T f(ω, c, τ, σ)dτdσ. Total factor productivity is

A(c) = J

(
L

∫
ω∈Ω

j(ω)f(ω, c)dω

)
, (5)

where J(·) is a positive, strictly increasing function and j(ω) is a positive, non-decreasing

function. Numerous agglomeration processes may generate such productivity benefits, and

we do not attempt to distinguish between them here.

3.2 Equilibrium

In a competitive equilibrium, individuals maximize utility, final-good producers and landown-

ers maximize profits, and markets clear. Individuals maximize their utility by their choices

of city, location, and sector such that

15Models in the systems-of-cities literature typically treat the distribution of rents as a secondary issue,
dispensed with in a variety of ways. Sometimes they allow for absentee landlords; sometimes they distribute
the land rents on a per capita basis to local residents; sometimes it is assumed that all agents have a
proportional share in an economy-wide mutual fund in land. See, for example, Henderson (1987), Helpman
(1998), Rossi-Hansberg, Sarte, and Owens (2010), or Diamond (2016). For simplicity we assume that rents
accrue to landlords who live outside the cities of interest and spend it on the numeraire final good.
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f(ω, c, τ, σ) > 0 ⇐⇒ {c, τ, σ} ∈ arg maxU(c, τ, σ;ω). (6)

Profit maximization by final-good producers yields demands for intermediates

Q(σ) = I
( p(σ)

B(σ)

)−ε
, (7)

where I ≡ L
∑

c

∫
σ

∫
ω

∫
τ
q(ω, c, τ, σ)p(σ)f(ω, c, τ, σ)dτdωdσ denotes total income and these

producers’ profits are zero. Profit maximization by absentee landlords engaged in Bertrand

competition causes unoccupied locations to have rental prices of zero,

r(c, τ)×
(
S ′(τ)− L

∫
σ∈Σ

∫
ω∈Ω

f(ω, c, τ, σ)dωdσ

)
= 0 ∀c ∀τ. (8)

Market clearing requires the endogenous quantity of individuals of skill ω residing in city

c at location τ and working in sector σ, L × f(ω, c, τ, σ), to be such that the supply of a

location type is greater than or equal to its demand, the demand and supply of intermediate

goods are equal, and every individual is located somewhere. Denoting the set of city sites

by C:

S ′(τ) ≥ L

∫
ω∈Ω

∫
σ∈Σ

f(ω, c, τ, σ)dσdω ∀c ∀τ (9)

Q(σ) =
∑
c∈C

Q(σ, c) = L
∑
c∈C

∫
ω∈Ω

∫
τ∈T

q(c, τ, σ;ω)f(ω, c, τ, σ)dωdτ ∀σ (10)

f(ω) =
∑
c∈C

f(ω, c) =
∑
c∈C

∫
σ∈Σ

∫
τ∈T

f(ω, c, τ, σ)dτdσ ∀ω (11)

A competitive equilibrium is a set of functions Q : Σ → R+, f : Σ × C × T × Ω → R+,

r : C× T → R+, and p : Σ→ R+ such that conditions (6) through (11) hold.

3.3 A system of cities

Cities’ populations are endogenously determined in spatial equilibrium. Two equilibrium

arrangements are possible: either all cities are identical in their TFPs and population sizes,

or cities are heterogeneous. The latter is the empirically relevant case. Our predictions about

the distributions of skills and sectors across cities of different sizes apply to any equilibrium
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in which cities are heterogeneous.16

First, we solve for occupational assignments by exploiting the fact that locational and

sectoral arguments are separable in individuals’ utility functions. Given goods prices p (σ),

individuals’ sectoral choices are independent of their locational choices:

arg max
σ

A(c)T (τ)H(ω, σ)p(σ)− r(c, τ) = arg max
σ

H(ω, σ)p(σ)

Define the assignment function M(ω) = arg maxσH(ω, σ)p(σ) so that we can define the in-

come associated with each skill’s optimal occupational choice asG(ω) ≡ H(ω,M(ω))p(M(ω)).

By comparative advantage, M(ω) is increasing.17 By absolute advantage, more skilled indi-

viduals earn higher nominal incomes and G(ω) is a strictly increasing function.18

Second, we solve for locational assignments by introducing a notion of locational attrac-

tiveness. Individuals value the product A(c)T (τ), which we dub attractiveness.

Definition 1. The attractiveness of a location in city c of (inverse) innate desirability τ is

γ = A(c)T (τ).

Note that individuals are indifferent to the relative contributions of endogenous city-level

TFP A (c) and a location’s innate desirability within the city T (τ) to attractiveness.19 In

equilibrium, two locations of equal attractiveness must have the same price, so we can de-

scribe the rental price of a location of attractiveness γ as rΓ(γ). Thus, individuals’ locational

choices can be characterized in terms of attractiveness:

max
γ

γG(ω)− rΓ(γ)

In equilibrium, more skilled individuals occupy more attractive locations. More attractive

locations have higher rental prices. Since G(ω) is strictly increasing, locational attractiveness

16In fact, for a special case in which TFP A (c) depends on population size alone with constant elasticity
α and locational supply V (z), defined below, exhibits a constant elasticity of 1−α

α , it can be shown that any
collection of city sizes summing to L is indeed an equilibrium of the model.

17Lemma 1 of Costinot and Vogel (2010) shows that M(ω) is continuous and strictly increasing in equi-
librium, given equation (7). It is worth noting here, as well, the role played by our assumption of zero trade
costs. If trade between cities were costly, prices and sectoral assignments would be city-specific, hence p (σ, c)
and M (ω, c). We follow a vast factor-price-equalization literature in assuming no trade costs. To the extent
that trade between cities is less costly than trade between countries, this is a weaker assumption than in the
international trade literature, e.g. in Costinot and Vogel (2010). Intercity trade costs are one reason the
data might reject our model’s predictions making those predictions non-obvious.

18Absolute advantage across all sectors is not necessary to insure income rises with skill. The weaker
condition that productivity is increasing in skill at the equilibrium assignments, d

dωH(ω,M(ω)) > 0, would
be sufficient.

19This is why our model generates incomplete sorting across cities. Individuals of a given skill type will
be indifferent between equally attractive locations that are in different cities.
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complements individual skill. Since more skilled individuals are more willing to pay for more

attractive locations, equilibrium locational assignments feature positive matching between

skill ω and attractiveness γ.

We have considered a location’s attractiveness without regard to which city that location

belongs. If the entire population lived in a single city, then desirability τ would be a sufficient

statistic for attractiveness γ. In that case, equilibrium locational assignments and prices can

be characterized as in standard land-use models (Fujita and Thisse, 2002, Ch 3), as we show

in Appendix A.1. For a system of cities, we first characterize locational assignments and

prices in terms of attractiveness γ using similar tools. We then translate these assignments

and prices into functions of c and τ to characterize the system of cities.

Within each city, more desirable (low τ) locations are more attractive. Competition

among landlords ensures that the most desirable locations are those occupied, so the least

desirable occupied site τ̄(c) ≡ supτ{τ : f(ω, c, τ, σ) > 0} in a city of population L(c) is

defined by L(c) = S(τ̄(c)). Denote each city’s set of occupied locations by T̄ (c) ≡ [0, τ̄(c)].

Less desirable locations have lower rental prices, and the least desirable occupied site has a

rental price of zero.

Lemma 1 (Populated locations). In equilibrium, S(τ) = L
∫ τ

0

∫
σ∈Σ

∫
ω∈Ω

f(ω, c, x, σ)dωdσdx ∀τ ∈
T̄ (c), r(c, τ) is strictly decreasing in τ ∀τ < τ̄(c), and r(c, τ̄(c)) = 0.

These results suffice to allow us to make some cross-city comparisons prior to solving for

locational assignments and prices.

In equilibrium, cities with higher TFP have larger populations. Consider two cities, c

and c′, that differ in productivity, with A(c) > A(c′). If c were less populous than c′, then

its least desirable occupied location would be more desirable, τ̄(c) ≤ τ̄(c′), since the supply

of locations, S(τ), is increasing (and common across cities). Since A(c) > A(c′), this would

make the least attractive occupied location in city c more attractive than the least attractive

occupied location in city c′, A(c)T (τ̄(c)) > A(c′)T (τ̄(c′)). By lemma 1, each of these locations

has a rental price of zero. Every individual would strictly prefer the more attractive location

at the same price, so no one would choose to live in c′ at τ̄(c′), contradicting the definition

of τ̄(c′) as an occupied location. So the city with higher TFP must have a larger population.

A smaller city’s locations are a subset of those in a larger city in terms of attractiveness.

For every location in the less populous city, there is a location in the more populous city

that is equally attractive. The location in city c′ of innate desirability τ ′ is equivalent to a

location τ in city c, given by A(c)T (τ) = A(c′)T (τ ′). The equally attractive location in the

larger city has higher TFP but lower innate desirability. The more populous city also has

locations that are strictly more attractive than the best location in the less populous city;

there are locations of attractiveness γ ∈ (A(c′)T (0), A(c)T (0)] found in c and not in c′.
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Across and within cities, more skilled individuals occupy more attractive locations.

Without loss of generality, order and label positive-population cities from 1 to C so that

A(C) ≥ A(C − 1) ≥ · · · ≥ A(2) ≥ A(1). Denote the set of attractiveness levels occupied

in equilibrium by Γ ≡ [γ, γ̄], where γ ≡ A(C)T (τ̄(C)) and γ̄ ≡ A(C)T (0). Individuals of

higher skill have greater willingness to pay for more attractive locations, so in equilibrium

higher-ω individuals occupy higher-γ locations.

Lemma 2 (Locational assignments). In equilibrium, there exists a continuous and strictly

increasing locational assignment function K : Γ→ Ω such that (i) f(ω, c, τ,M(ω)) > 0 ⇐⇒
A(c)T (τ) = γ and K(γ) = ω, and (ii) K(γ) = ω and K(γ̄) = ω̄.

To obtain an explicit expression for K : Γ→ Ω, we can denote the supply of locations across

all cities combined with attractiveness γ or greater as SΓ(γ). The supply function is

SΓ(γ) =
∑

c:A(c)T (0)≥γ

S

(
T−1

(
γ

A(c)

))
.

By definition SΓ(γ̄) = 0 and by the fact that the best locations are populated SΓ(γ) = L.

Lemmas 1 and 2 imply that SΓ(γ) = L
∫ γ̄
γ
f(K(x))K ′(x)dx, so K(γ) = F−1

(
L−SΓ(γ)

L

)
.

These locational assignments yield an expression for equilibrium locational prices, which

are increasing in attractiveness and given by the upper envelope of individuals’ bid-rent

schedules.

Lemma 3 (Locational prices). In equilibrium, the rent schedule rΓ(γ) is increasing and

continuously differentiable on [γ, γ̄] and given by rΓ(γ) =
∫ γ
γ
G(K(x))dx.

This determination of locational assignments and prices within the system of cities in terms

of attractiveness is analogous to determining these locational assignments and prices for a

single autarkic city with a supply of locations that is the sum of locations across the system

of cities. Next, we translate these assignments and prices stated in terms of attractiveness

to locations within each city.

3.4 The distributions of skills and sectors across cities

We can now characterize the distributions of rents, skills, and sectoral employment in a

system of cities. We first show how the distribution of locations across cities governs the dis-

tributions of skills and sectoral employment across cities through the locational and sectoral

assignment functions. We then identify a sufficient condition under which these distribu-

tions are log-supermodular. Finally, we identify conditions under which larger cities will

have larger populations of all skill types and employ more people in all sectors.
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Since attractiveness is the product of city-level TFP and innate desirability, a city’s supply

of locations of a given attractiveness depends on both its endogenous TFP and the exogenous

supply of locations of particular desirability. The supply of locations with attractiveness γ

in city c is

s(γ, c) ≡ ∂

∂γ

[
S (τ̄(c))− S

(
T−1

(
γ

A(c)

))]
if γ ≤ A(c)T (0)

=


1

A(c)
V
(

γ
A(c)

)
if γ ≤ A(c)T (0)

0 otherwise
, (12)

where V (z) ≡ − ∂
∂z
S (T−1(z)) is the supply of locations with innate desirability T−1(z). V (z)

is a composite fundamental that depends only on the exogenous functions T (τ) and S (τ).

For example, if each city were a disc, S(τ) = πτ 2, and desirability reflected linear costs of

commuting to the center, T (τ) = d1 − d2τ , this supply of locations within cities would be

V (z) = 2π
d2

2
(d1 − z). The rental price of a location depends only on its attractiveness, so the

rental price of a location with innate desirability τ in city c is r(c, τ) = rΓ(A(c)T (τ)).

The distribution of skills follows from s(γ, c) and locational assignments K : Γ→ Ω.

Lemma 4 (A city’s skill distribution). The population of individuals of skill ω in city c is

L× f(ω, c) =

K−1′(ω)s(K−1(ω), c) if A(c)T (0) ≥ K−1(ω)

0 otherwise
.

Thus, the relative population of individuals of skill ω in two cities depends on the relative

supply of locations of attractiveness K−1(ω). Since higher-ω individuals occupy more at-

tractive locations and the most attractive locations are found exclusively in the larger city,

there is an interval of high-ω individuals who reside exclusively in the larger city. Individuals

of abilities below this interval are found in both cities, and their relative quantity f(ω,c)
f(ω,c′)

is

proportionate to the relative supply of locations of attractiveness K−1(ω).

The distribution of sectoral employment follows from s(γ, c), locational assignments K :

Γ → Ω, and sectoral assignments M : Ω → Σ. As established in subsection 3.3, the

sectoral assignment function M (ω) is common across c and τ because locations’ productivity

advantages are Hicks-neutral. Thus, the employment distribution f (σ, c) closely follows the

skill distribution f (ω, c).

Lemma 5 (A city’s sectoral employment distribution). The population of individuals em-
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ployed in sector σ in city c is

L×f(σ, c) =

M−1′ (σ)K−1′ (M−1(σ)) s (K−1 (M−1 (σ)) , c) if A(c)T (0) ≥ K−1 (M−1 (σ))

0 otherwise
.

As a result, two cities’ relative employment levels in sector σ depend on their relative supplies

of locations with attractiveness K−1 (M−1 (σ)).

We now identify the condition under which the distributions of rents, skills, and sectoral

employment across cities are log-supermodular functions. When the distribution of locational

attractiveness is log-supermodular, so are the distributions of skills and sectoral employment.

The first result follows from more skilled individuals occupying more attractive locations in

equilibrium. The second result follows from the fact that sectoral assignments are common

across locations, so that sectoral composition is governed by skill composition.

Since the distribution of locations in terms of innate desirability τ is common across

cities, cross-city differences in the distributions of locational attractiveness γ reflect differ-

ences in cities’ TFPs. Equation (12) demonstrates a hierarchy of locational attractiveness,

since the most attractive locations are found exclusively in the highest-TFP city. Among

levels of attractiveness that are supplied in multiple cities, equation (12) shows that cities’

TFPs shape the supply schedule s(γ, c) through both a scaling effect ( 1
A(c)

) and a dilation of

V ( γ
A(c)

). Comparisons of relative supplies (s(γ, c)s(γ′, c′)
?
> s(γ′, c)s(γ, c′)) depend only on

the dilation.

Our main result, Proposition 1, states a sufficient condition for the ordering of city TFPs

to govern the ordering of locational supplies in any equilibrium. In turn, these govern the

distributions of skills and sectoral employment across cities in any equilibrium.

Proposition 1 (Cross-city distributions of attractiveness, skills, and sectors).

(a) The supply of locations of attractiveness γ in city c, s(γ, c), is log-supermodular if the

supply of locations with innate desirability T−1(z) within each city, given by V (z), has

a decreasing elasticity.

(b) If V (z) has a decreasing elasticity, then f(ω, c) and f(σ, c) are log-supermodular.

(c) If V (z) has a decreasing elasticity, then sectoral output Q(σ, c) and revenue R(σ, c) ≡
p(σ)Q(σ, c) are log-supermodular.

Proposition 1a links our assumption about each city’s exogenous distribution of locations,

V (z), to endogenous equilibrium locational characteristics, s(γ, c). The proof is in Appendix
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B.20 Heuristically, note that a higher-TFP city is relatively abundant in more attractive

locations when the elasticity ∂ ln s(γ,c)
∂ ln γ

is larger in the higher-TFP city. Equation (12) implies

that the γ-elasticity of s(γ, c) is the elasticity of V (z) at z = γ
A(c)

. When this elasticity is

higher at lower values of z, an ordering of cities’ TFPs (and thus cities’ sizes) is an ordering

of these elasticities, and thus an ordering of relative supplies at equilibrium. A number of

conceivable V (z) schedules satisfy this decreasing-elasticity condition.21 For example, in the

canonical monocentric-city model mentioned earlier, V (z) = 2π
d2

2
(d1 − z) has an elasticity of

− z
d1−z , which is decreasing in z.

An illustrative boundary case is when V (z) is constant.22 Per equation (12), there is

a hierarchy of locational attractiveness in which the most attractive locations are found

only in the largest cities, independent of V (z). For attractiveness levels that are attained

in both cities, there is no difference in relative supplies when V (z) is constant, because
s(γ,c)
s(γ′,c)

is a constant when both s(γ, c) and s(γ′, c) are non-zero. Thus, s(γ, c) is weakly log-

supermodular everywhere and strictly log-supermodular for the highest values of γ. For

the more general result, the decreasing-elasticity condition in Proposition 1 ensures that

intensive-margin variation in relative supplies aligns with the extensive margin of locational

attractiveness.

The distributions of skills and sectoral employment across cities in Proposition 1b fol-

low the distribution of locational attractiveness. The skill distribution follows immediately

through the locational assignment function (lemma 4) and the employment distribution fol-

lows in turn through the sectoral assignment function (lemma 5). Note that these lemmas

show that the most skilled individuals working in the most skill-intensive sectors are found

only in the most populous cities. The skills and sectors found in a smaller city are a strict

subset of those found in a larger city. This hierarchy of skills across cities at the top of the

skill distribution does not depend on the shape of V (z). Since K : Γ→ Ω and M : Ω→ Σ

are strictly increasing functions, f(ω, c) and f(σ, c) are log-supermodular if and only if s(γ, c)

is log-supermodular. Thus, Proposition 1 links the log-supermodularity of these distributions

over the full range of skills and sectors to the properties of V (z). By equation (5), a city

that is larger and more skilled has higher TFP. In Section 3.3, we established that cities with

higher TFP have larger populations. Proposition 1b completes the circle by showing that if

one city has higher TFP than another, then its population is more skilled. TFP differences

20Lemma 8 in Appendix B also shows that the sufficient condition is necessary for s(γ, c) to be log-
supermodular for all possible values of A(c).

21For example, if each city’s supply of locations with innate desirability T−1(z) is the exponential, Weibull,
gamma, or log-normal distribution, V (z) exhibits this decreasing-elasticity property. See Appendix A.3 for
details.

22For example, a linear city S (τ) = 2τ with linear commuting costs T (τ) = d1 − d2τ makes V (z) a
constant.
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driven by population size and skill composition are self-sustaining.

Given our assumptions about technologies and spatial equilibrium, the fact that larger

cities are skill-abundant and more skilled individuals work in more skill-intensive sectors

implies that larger cities produce relatively more in skill-intensive sectors. This pattern of

specialization is closely related to the high-dimensional model of endowment-driven compar-

ative advantage introduced by Costinot (2009), but in our setting cities’ populations and

skill composition are endogenously determined and there is within-city heterogeneity in pro-

ductivity.23 The distribution of output follows the distribution of skills because in spatial

equilibrium individuals employed in the same sector occupy locations of the same productiv-

ity.24 Thus, a city’s sectoral output is proportionate to its sectoral employment. Since that

output is freely traded, a city’s sectoral revenue is also proportionate to its sectoral employ-

ment. We therefore obtain part c of Proposition 1, which completes our characterization of

the pattern of comparative advantage across cities.25

When does the more productive city have a larger population of every skill type? By

lemma 4, whenever it has a larger supply of every attractiveness level, s(γ, c) ≥ s(γ, c′) ∀γ.

This is trivially true for γ > A(c′)T (0). What about attractiveness levels found in both

cities? Proposition 2 identifies a sufficient condition under which a larger city has a larger

supply of locations of a given attractiveness. Its proof appears in Appendix B. Applying this

result to the least-attractive locations yields a sufficient condition for larger cities to have

larger populations of all skill types and therefore employ more people in every sector.

Proposition 2 (City size and absolute size of local skills and sectors). For any A(c) > A(c′),

if V (z) has a decreasing elasticity that is less than -1 at z = γ
A(c)

, then s(γ, c) ≥ s(γ, c′). If

V (z) has a decreasing elasticity that is less than -1 at z = K−1(ω)
A(c)

=
γ

A(c)
, then A(c) > A(c′)

implies f(ω, c) ≥ f(ω, c′) and f(M(ω), c) ≥ f(M(ω), c′) ∀ω ∈ Ω.

23In particular, our Proposition 1c result that Q (σ, c) is log-supermodular is similar to Theorem 2 in
Costinot (2009), but the economic environment and relevant assumptions differ. Assumption 2 in Costinot
(2009)’s factor-endowment model is that countries’ exogenous endowments are such that countries can be
ranked according to the monotone likelihood ratio property. Our Proposition 1 identifies a sufficient condition
for cities’ equilibrium skill distributions to exhibit this property. Definition 4 of Costinot (2009) requires
that factor productivity vary across countries (cities) in a Hicks-neutral fashion. Since productivity A(c)T (τ)
varies both across and within cities, our production function q(c, τ, σ;ω) does not satisfy this requirement
for arbitrary locational assignments.

24In the productivity interpretation of T (τ), equilibrium productivity q(c, τ, σ;ω) = K−1(ω)H(ω, σ) does
not vary across ω-occupied locations. In the amenity interpretation of T (τ) described in Appendix A.2,
occupied locations’ productivities q(c, τ, σ;ω) = A(c)H(ω, σ) differ across cities in a Hicks-neutral fashion.

25A traditional definition of comparative advantage refers to locations’ autarkic prices. In our setting,
autarky means prohibiting both trade of intermediate goods and migration between cities. Since individuals
are spatially mobile, cities do not have “factor endowments”, and we must specify the autarkic skill distribu-
tions. If we consider an autarkic equilibrium with the skill distributions from the system-of-cities equilibrium,
then larger cities have lower relative autarkic prices for higher-σ goods because they are skill-abundant, as
shown by Costinot and Vogel (2010, p. 782).
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Our two propositions characterize the distribution of skills and sectors across cities. If

V (z) has a decreasing elasticity, then larger cities are more skill-abundant and specialize in

skill-intensive activities. If the elasticity is sufficiently negative, then larger cities are larger

in terms of all skill and sectors. We now turn to the data to see how well these predictions

describe US metropolitan areas.

4 Data description and empirical approach

Our model describes distributions within and across cities. While we have employed an

abstract idea of within-city heterogeneity in locational desirability, Proposition 1 makes con-

crete predictions about the distributions of skills and sectors across cities.26 We examine the

predictions of part b of Proposition 1 using two approaches. The first involves regression

estimates of the population elasticities of educational, occupational, and industrial popula-

tions. The second involves pairwise comparisons governed by the monotone likelihood ratio

property.

These tests require data on cities’ skill distributions, sectors’ skill intensities, and cities’

sectoral employment. We use public-use microdata from the US Census of Population to

identify the first two. The latter is described by data from County Business Patterns and

Occupational Employment Statistics. The Census of Population describes individuals’ ed-

ucational attainments, geographic locations, places of birth, occupations, and industries.

County Business Patterns describes cities’ industrial employment. Occupational Employ-

ment Statistics describes cities’ occupational employment. We combine these various data

at the level of (consolidated) metropolitan statistical areas (MSAs); see Appendix C for

details.

Subsections 4.1 through 4.3 describe the observable measures of skills, sectors, and skill

intensities that we employ in the two empirical approaches defined in subsection 4.4.

26Proposition 1 also makes predictions about other economic outcomes, such as sectoral outputs (part
c) and rental prices (implied by part a). We examine occupational employment levels, which are readily
available, since occupational output is not typically observed. The available evidence on urban costs, which
shows that the maximum, mean, and range of unimproved land prices are greater in larger cities (Combes,
Duranton, and Gobillon, 2012), is all consistent with our model’s predictions. We are not aware of a repre-
sentative sample of (unimproved) land prices to examine stochastic or likelihood-ratio dominance in rental
prices across cities. Investigating the hedonic determinants of locational desirability, which our theoretical
model has abstractly treated as potentially production benefits or consumption amenities, is a first-order
question about the internal structure of cities that is quite beyond the scope of this paper.
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4.1 Skills

Following a large literature, we use observed educational attainment as a proxy for individ-

uals’ skills. Educational attainment is a coarse measure, but it is the best measure available

in data describing many people across detailed geographic locations.27 We do not assume

that individuals with the same educational attainment are equally skilled. We map the con-

tinuum of skills in our theory to the discrete set of educational levels observed in the data

by assuming that the distribution of skills is increasing with educational attainment, such

that the distribution of educational attainment across cities is log-supermodular if f(ω, c)

is log-supermodular.28 To describe cities’ skill distributions, we aggregate individual-level

microdata to the level of metropolitan statistical areas. A large literature in urban eco-

nomics describes variation in terms of two skill groups, typically college and non-college

workers. Following Acemoglu and Autor (2011), we use a minimum of three skill groups.

The 2000 Census of Population microdata identify 16 levels of educational attainment, from

“no schooling completed” to “doctoral degree”. We define three skill groups of approxi-

mately equal size among the working population: high-school degree or less; some college or

associate’s degree; and bachelor’s degree or more. In a more ambitious approach, we also

consider nine skill groups, ranging from individuals who never reached high school (4 percent

of the population) to those with doctoral degrees (1 percent). Table 1 shows the popula-

tion shares and percentage US-born for each of these skill groups in 2000.29 Foreign-born

individuals are disproportionately in the tails of the educational distribution.

4.2 Sectors

In our model, workers produce freely traded sectoral outputs indexed by σ that are used

to produce the final good. In the international trade literature, it is common to interpret

sectors in models of comparative advantage as industries. Recent work in both international

and labor economics has emphasized a perspective focused on workers completing tasks,

which empirical work has frequently operationalized as occupations (Grossman and Rossi-

Hansberg, 2008; Acemoglu and Autor, 2011). We will implement empirical tests using each.

We define sectors to be the 19 private-sector industries in the two-digit stratum of the North

27In Appendix E.4, we infer skills from nominal wages and obtain similar results to those using educational
attainment.

28Costinot and Vogel (2010, 774) show that log-supermodularity of factor supplies in an observed char-
acteristic and unobserved skill ω is sufficient for mapping a theory with a continuum of skills to data with
discrete observed characteristics.

29This table describes labor-force participants 25 and older. See Appendix E for similar results using other
inclusion criteria.
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Table 1: Skill groups by educational attainment

Population Share Population Share
Skill (3 groups) share US-born Skill (9 groups) share US-born
High school or less .37 .78 Less than high school .04 .29

High school dropout .08 .73
High school graduate .25 .88

Some college .31 .89 College dropout .23 .89
Associate’s degree .08 .87

Bachelor’s or more .32 .85 Bachelor’s degree .20 .86
Master’s degree .08 .84
Professional degree .03 .81
Doctorate .01 .72

Notes: Sample is individuals 25 and older in the labor force residing in 270 metropolitan areas.
Data source: 2000 Census of Population microdata via IPUMS-USA

American Industry Classification System (NAICS) or the 22 occupational categories in the

two-digit stratum of the Standard Occupational Classification (SOC).30

We measure industrial employment in a metropolitan area using data from the 2000

County Business Patterns, which counts paid employees in almost all non-farm, non-government

establishments. We measure occupational employment in a metropolitan area using esti-

mates from the 2000 BLS Occupational Employment Statistics, which cover full-time and

part-time employees in all non-farm establishments. See Appendix C for details.

4.3 Skill intensities

Our theory makes the strong assumption that H(ω, σ) is strictly log-supermodular so that

sectors are ordered with respect to their skill intensities. In our empirical work, we infer

sectors’ skill intensities from the data using the observable characteristics of the workers

employed in them. We use microdata from the 2000 Census of Population, which contains

information about workers’ educational attainments, industries, and occupations. We use

the average years of schooling of workers employed in a sector as a measure of its skill

intensity.31 In doing so, we control for spatial differences by regressing years of schooling on

30Per Costinot and Vogel (2010, 773-774), for mapping a continuum of sectors to coarse categories in the
data, it is sufficient that more skill-intensive tasks are relatively more prevalent in sectors employing more
educated workers. Our industry results are not driven by our choice of NAICS aggregation: we find similar
empirical patterns when using three-digit industry definitions rather than two-digit definitions.

31Autor and Dorn (2013) rank occupations by their skill level according to their mean log wage. Our
assumption of absolute advantage is consistent with such an approach. Using average log wages as our
measure of skill intensity yields empirical success rates comparable to and slightly higher on average than
those reported in Section 5. We use years of schooling rather than wages as our measure of sectoral skill
intensities since nominal wages may also reflect compensating differentials or local amenities.
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Table 2: Sectoral skill intensities
Skill Skill

SOC Occupational category intensity NAICS Industry intensity
45 Farming, Fishing & Forestry 9.2 11 Forestry, fishing, hunting & agriculture support 10.9
37 Cleaning & Maintenance 10.9 72 Accommodation & food services 11.8
35 Food Preparation & Serving Related 11.5 23 Construction 11.9
47 Construction & Extraction 11.5 56 Admin, support, waste mgt, remediation 12.2
51 Production 11.5 48 Transportation & warehousing 12.6
29 Healthcare Practitioners & Technical 15.6 52 Finance & insurance 14.1
21 Community & Social Services 15.8 51 Information 14.1
25 Education, Training & Library 16.3 55 Management of companies & enterprises 14.5
19 Life, Physical & Social Science 17.1 54 Professional, scientific & technical services 15.3
23 Legal Occupations 17.3 61 Educational services 15.6

Notes: Skill intensity is average years of schooling for individuals 25 and older after
removing metropolitan-area fixed effects. Data source: 2000 Census of Population
microdata via IPUMS-USA

both sectoral and city fixed effects, but we have found that omitting the city fixed effects

has little effect on the estimated skill intensities. Table 2 reports the five least skill-intensive

and five most skill-intensive sectors among both the 19 industrial categories and the 22

occupational categories. There is considerably greater variation in average years of schooling

across occupational categories than across industries.32

4.4 Empirical tests

Proposition 1b says that the distribution of skills across cities, f(ω, c), and the distribu-

tion of sectoral employment across cities, f(σ, c), are log-supermodular functions. Log-

supermodularity has many implications; we focus on two that are amenable to empirical

testing. If the function f(ν, c) is log-supermodular, then

1. a linear regression ln f(ν, c) = αν + βν lnL(c) + εν,c in which αν are fixed effects and

L(c) is city population yields βν ≥ βν′ ⇐⇒ ν ≥ ν ′;

2. if C and C ′ are distinct sets and C is greater than C ′ (infc∈C L(c) > supc′∈C′ L(c′)) and

nC (nC′) is the number of elements in C (C ′),

1

nC

∑
c∈C

ln f(ν, c) +
1

nC′

∑
c′∈C′

ln f(ν ′, c′) ≥ 1

nC

∑
c∈C

ln f(ν ′, c) +
1

nC′

∑
c′∈C′

ln f(ν, c′) ∀ν > ν ′.

The first implication, which we will refer to as the “elasticity test,” says that the city-

population elasticity of the population of a skill type in a city f(ω, c) is increasing in skill

32The standard deviations of average years of schooling across occupational and industrial categories are
2.3 and 1.2, respectively.
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ω.33 Similarly, the population elasticity of sectoral employment f(σ, c) is increasing in skill

intensity σ. Our theory thus provides a structure to interpret previous work describing the

population elasticities of sectoral employment, such as Henderson (1983) and Holmes and

Stevens (2004).34 Standard econometric tests are available to assess whether our estimated

population elasticities exhibit the property that ν ≥ ν ′ ⇒ βν ≥ βν′ .

The second implication, which we will refer to as the “pairwise comparisons test”, says

that if cities are divided into bins ordered by population sizes, then in any pairwise com-

parison of two bins and two skills/sectors, the bin containing more populous cities will have

relatively more of the more skilled type. Our theory therefore implies thousands of pairwise

comparisons for skills and millions for sectors. Appendix D shows that, in the presence

of additive random errors to ln f(ν, c), the likelihood of a successful pairwise comparison

increases with the difference in population size, the difference in skill (intensity), and the

number of cities assigned to each bin. To summarize this test, we report the fraction of

pairwise inequalities matching the predicted sign, weighted by the product of the two cities’

difference in log population and two sectors’ difference in skill intensity.35 When comparing

narrow educational categories, we also weight by the product of the educational categories’

population shares.36 To assess the statistical significance of the fraction of these pairwise

comparisons that yield the expected inequality, we compute the probability of obtaining

the observed success rate under the null hypothesis that skills and sectors are uniformly

distributed across cities.37

These two empirical tests are not independent, since they are both implied by log-

33The linear regression may understood as a first-order Taylor approximation: ln f(ν, c) ≈ ln f(ν, c∗) +
∂ ln f(ν,c)
∂ lnL(c) |c=c∗

(lnL(c)− lnL(c∗)) + ε = αν + βν lnL(c) + εν,c, where βν = ∂ ln f(ν,c)
∂ lnL(c) |c=c∗

is increasing in ν by

log-supermodularity of f(ν, c).
34Henderson (1983) regresses employment shares on population levels, but reports “percent ∆ share /

percent ∆ population”, which is equal to βσ−1 in our notation. Similarly, Holmes and Stevens (2004) describe
how location quotients, a city’s share of industry employment divided by its share of total employment, vary

with city size. In our notation, a location quotient is LQ(σ, c) =
f(σ,c)/

∑
c′ f(σ,c

′)

L(c)/L , so the L(c)-elasticity of

LQ(σ, c) is βσ − 1.
35We report unweighted success rates in Appendix E. An unweighted statistic assigns equal weight to

correctly predicting that Chicago (population 9 million) is relatively more skilled than Des Moines (456
thousand) and correctly predicting that Des Moines is relatively more skilled than Kalamazoo (453 thousand).
Given the numerous idiosyncratic features of the real world omitted from our parsimonious theory, the former
comparison is much more informative about the relevance of our theory than the latter. Stated differently,
a failure to correctly order Chicago and Des Moines should be much more damning for our theory than a
failure to correctly order Des Moines and Kalamazoo. Weighting accomplishes this.

36An unweighted average, reported in Appendix E, treats comparisons involving high school graduates (25
percent of the workforce) and those involving PhDs (1 percent) equally, while these differ in their economic
import.

37Appendix D provides details of a permutation test in which we shuffle our observations 1,000 times to
compute the distribution of success rates under the null. Power to reject the null decreases as the number
of bins decreases.

24



supermodularity. Appendix D describes how they are related. In short, success of one test

implies success of the other, to the extent that the first-order approximations of ln f(ν, c) fit

the data well. We also implement a test for systematic deviations from log-supermodularity

proposed by Sattinger (1978).38

5 Empirical results

In this section, we test our predictions relating cities’ sizes to their distributions of skill, oc-

cupational employment, and industrial employment. First, we examine whether populations

are log-supermodular in educational attainment and city size. This prediction is a much

stronger characterization of cities’ skill distributions than the well-known fact that larger

cities typically have a greater share of college graduates. Second, we examine whether the

pattern of sectoral employment is strongly ordered by this pattern of skills. Our theory’s

predictions are more realistic than those which say cities will be completely specialized in

an industry or produce in fixed proportions across all industries, as implicit in models with

a single output. They are also more specific than theories allowing arbitrary patterns of

interindustry spillovers. Finally, we examine whether larger cities are larger in all skill and

sectoral categories or whether, as might be suggested by theories of industrial localization,

different skills and sectors attain their maximal presence at different points in the city-size

distribution.

The data are broadly consistent with our predictions. Larger cities are more skilled than

smaller cities when comparing narrowly defined educational categories, although in the lowest

educational category, international migrants play an important role that is omitted from our

model. More skill-intensive sectors are relatively larger in more populous cities: sectoral

population elasticities rise with skill intensity, and pairwise comparisons yield statistically

significant results in the direction predicted by our theory. We show that there are not

systematic violations of our predicted pattern of comparative advantage. Consistent with

our model, there is a strong tendency for larger cities to be larger in all skills and sectors.

5.1 Larger cities are relatively more skilled

This subsection tests our prediction that larger cities have relatively more skilled populations.

We empirically describe skill abundance using the two tests described in subsection 4.4. We

38These cross-sectional results should be thought of as examining a long-run equilibrium. Such a focus is
valuable as well if one wants to think about comparative statics for long-run outcomes. Of course, if one
wants to think explicitly about transitional dynamics, one would need to augment our model with adjustment
frictions appropriate to the shock contemplated.
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Table 3: Population elasticities of three skill groups

(1) (2) Population Share
Dependent variable: ln f(ω, c) All US-born share US-born
βω1 High school or less × log population 0.954 0.895 0.37 0.78

(0.0108) (0.0153)
βω2 Some college × log population 0.996 0.969 0.31 0.89

(0.0105) (0.0122)
βω3 Bachelor’s or more × log population 1.086 1.057 0.32 0.85

(0.0153) (0.0162)

Notes: Standard errors, clustered by MSA, in parentheses. Sample is individuals 25 and older in the
labor force residing in 270 metropolitan areas.

first do these exercises using three skill groups defined by educational attainment levels and

then repeat them using nine very disaggregated skill groups. In Appendix E.4, we infer skills

from nominal wages and obtain similar results.

5.1.1 Three skill groups

The elasticity test applied to the three skill groups across 270 metropolitan areas is reported

in Table 3. The results match our theory’s prediction that larger cities will have relatively

more people from higher skill groups. The population elasticities are monotonically increas-

ing in educational attainment and the elasticities differ significantly from each other.39 In

anticipation of issues related to international immigration that arise when we examine nine

skill groups, the second column of the table reports the population elasticities of US-born

individuals for these three educational categories. The estimated elasticities are slightly

lower, since foreign-born individuals are more concentrated in larger cities, but the differ-

ences between the elasticities are very similar. Larger cities’ populations are more skilled,

on average.

The pairwise comparison test examines ordered groups of cities to see if the relative pop-

ulation of the more skilled is greater in larger cities. Following subsection 4.4, implementing

this test involves defining bins of cities. Ordering cities by population, we partition the

270 metropolitan areas in our data into 2, 3, 5, 10, 30, 90, and 270 bins of cities. Making

pairwise comparisons between three skill groups and as many as 270 metropolitan areas

involves computing up to 108,945 inequalities.40 Note that prior work typically describes a

39Younger cohorts have higher average educational attainment. The results in Tables 3 and 5 are robust
to estimating the elasticities for educational groups within 10-year age cohorts. Thus, our results are not
due to the young being both more educated and more likely to live in large cities.

40With n city bins and m skill groups, we make n(n−1)
2

m(m−1)
2 comparisons. For example, 270×269

2
3×2
2 =
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contrast between large and small cities for skilled and unskilled, whereas our most aggregated

comparison is between large and small cities for three skill groups.

Table 4 reports the success rates for these pairwise comparisons for both the population as

a whole and those individuals born in the United States. When making pairwise comparisons

across all 270 metropolitan areas, the success rates are 67 and 69 percent, respectively, and

highly statistically significant. As we decrease the number of bins (increase the number of

cities per bin), the success rates increase, consistent with binning reducing the influence of

idiosyncratic errors. When using five bins or fewer, these success rates exceed 97 percent.41

These results are all statistically significant at the 1-percent level, except for the 2-bin case

that involves only three comparisons, severely reducing the test’s power.42

Both our empirical tests show a clear central tendency in the data across three skill groups.

More skilled individuals are relatively more prevalent in more populous cities. Moreover,

these patterns are difficult to reconcile with a “skilled-unskilled” dichotomy. Individuals

with “some college” are distinct from both those with high school or less education and

those with a bachelor’s or higher education.

108, 945.
41Our comparisons of two or five bins of cities are analogous to the empirical exercises presented in

Eeckhout, Pinheiro, and Schmidheiny (2014) and Bacolod, Blum, and Strange (2009).
42Under a uniform null hypothesis, the probability that three tossed coins all turn up heads is 1/8, so the

minimum possible p-value is 0.125. Similarly, our 1,000 simulations of the three comparisons under the null
yield three correct comparisons in 17.8% of simulations, bounding the p-value.
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Table 4: Pairwise comparisons of three skill groups

Total Success rate Success rate
Bins comparisons All US-born

270 108,945 0.67 0.69
(0.00) (0.00)

90 12,015 0.74 0.77
(0.00) (0.00)

30 1,305 0.82 0.86
(0.00) (0.00)

10 135 0.89 0.91
(0.00) (0.00)

5 30 0.97 0.99
(0.00) (0.00)

3 9 1.00 1.00
(0.00) (0.00)

2 3 1.00 1.00
(0.17) (0.17)

Notes: P-values for uniform null hypothesis in
parentheses. Sample is individuals 25 and older in the
labor force residing in 270 metropolitan areas. Outcomes
weighted by log-population differences.

5.1.2 Nine skill groups

We next examine our tests for the case with nine skill groups. Per Lemma 4, our predictions

about the top of the skill distribution are stronger in the sense that the skills found in a

larger city are a superset of those found in a smaller city, independent of the shape of the

locational supply function V (z). The results of the elasticity test are presented in Table

5. The more educated skill groups generally have higher population elasticities, as would

be expected from the three-skill-group results. This pattern is very clear for high school

graduates through professional degree holders, an interval that accounts for 87 percent of

the US population. The extreme tails of the distribution, however, do not conform to the

prediction of our model.

The population elasticity of PhDs is somewhat below that of other college-educated

categories. This is problematic for all theories in which skill-biased agglomeration should

cause the most skilled to concentrate in larger cities. On the other hand, only one percent

of US workers possess a doctoral degree, so their spatial distribution has limited impact on

sectoral employment patterns and aggregate outcomes. The lower-than-expected population

elasticity reflects the cross-city distribution of institutions of higher education. The 27

percent of PhDs whose occupation is “postsecondary teacher” exhibit a population elasticity
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Table 5: Population elasticities of nine skill groups

(1) (2) Population Share
Dependent variable: ln f(ω, c) All US-born share US-born
βω1 Less than high school × log population 1.089 0.858 0.04 0.29

(0.0314) (0.0239)
βω2 High school dropout × log population 1.005 0.933 0.08 0.73

(0.0152) (0.0181)
βω3 High school graduate × log population 0.925 0.890 0.25 0.88

(0.0132) (0.0163)
βω4 College dropout × log population 0.997 0.971 0.23 0.89

(0.0111) (0.0128)
βω5 Associate’s degree × log population 0.997 0.965 0.08 0.87

(0.0146) (0.0157)
βω6 Bachelor’s degree × log population 1.087 1.059 0.20 0.86

(0.0149) (0.0164)
βω7 Master’s degree × log population 1.095 1.063 0.08 0.84

(0.0179) (0.0181)
βω8 Professional degree × log population 1.113 1.082 0.03 0.81

(0.0168) (0.0178)
βω9 PhD × log population 1.069 1.021 0.01 0.72

(0.0321) (0.0303)

Notes: Standard errors, clustered by MSA, in parentheses. Sample is
individuals 25 and older in the labor force residing in 270 metropolitan areas.

of 1.01, while the remainder of PhDs exhibit a population elasticity of 1.14. Thus, outside of

higher education, which may be poorly described by a competitive model with agglomeration

economies, the distribution of PhDs across cities is well predicted by our theory.43

Those with less than a high-school education, who account for 12 percent of the working

population, exhibit higher-than-expected population elasticities. Within the context of our

model, this could be attributed to the locational supply function V (z) failing to exhibit

a decreasing elasticity, causing s (γ, c) to not be log-supermodular everywhere. As noted

previously, while our predictions about the top of the skill distribution are independent of

the shape of V (z), our predictions about lower skills depend on V (z) exhibiting a decreasing

elasticity. Other assumptions about this function can deliver non-monotonic population

elasticities. For example, it is possible to make assumptions on V (z) such that population

elasticities decrease with skill among the least-skilled segment of the population and increase

43About two-thirds of faculty in higher education are employed by public institutions, which are not
profit-maximizing and for practical and political reasons are likely to be proportionate to local population.
Furthermore, universities are conventionally land-intensive enterprises.
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with skill among the most-skilled segment of the population.44

Looking outside our model’s mechanics, foreign-born individuals are more concentrated

in larger cities, regardless of their educational attainment. The high population elasticity of

the least-educated group is attributable to 71 percent of those with less than a high school

education being immigrants. The second column of Table 5 shows that if we restrict attention

to US-born individuals, this population elasticity drops from 1.089 to 0.858, below that of

all other skill groups.45 An alternative to restricting attention to US-born individuals is to

estimate the population elasticities using data from 1980, when immigrants were a much

smaller share of the US population. In 1980 data, the least skilled group has the lowest

population elasticity, and the difference between the 1980 and 2000 population elasticities

is almost entirely attributable to the rising share of the foreign-born in this least-skilled

population. We discuss mechanisms – mechanisms omitted from our model – that may

cause immigrants of all skill levels to concentrate in larger cities in Appendix E.1.46

We now turn to the pairwise comparisons for the case with nine skill groups in 2000.

These comparisons, presented in Table 6, check the predicted inequalities for as many as

36,315 city pairs for each pairing of the nine skill groups, separately for the population

as a whole and for those individuals born in the United States. These comparisons ask a

44In particular, suppose that V (z) had an increasing elasticity at low values of z and a decreasing elasticity

at high values of z, ∂ lnV (z)
∂ ln z > 0 if z < z∗ and ∂ lnV (z)

∂ ln z < 0 if z > z∗. It can then be shown that s (γ, c)
would be log-submodular for γ < A (1) z∗ and log-supermodular for γ > A (C) z∗. Hence, f (ω, c) would be
log-submodular for ω < K (A (1) z∗) and log-supermodular for ω > K (A (C) z∗).

45Interestingly, among US-born individuals, the nine estimated elasticities naturally break into the three
more aggregate educational attainment categories that we used: βω1 , βω2 , βω3 ∈ (0.85, 0.94);βω4 , βω5 ∈
(0.96, 0.98);βω6 , βω7 , βω8 , βω9 ∈ (1.02, 1.09).

46The fact that the extreme tails of the skill distribution do not conform to our predictions invites a
comparison to Eeckhout, Pinheiro, and Schmidheiny (2014). Eeckhout, Pinheiro, and Schmidheiny (2014)
introduce a model in which larger cities’ skill distributions have the same median skill but exhibit thicker tails.
In particular, their model predicts that skill types’ population elasticities will be U-shaped, with the median
skill type exhibiting the lowest population elasticity. The population elasticity of a skill type should increase
with its distance from the median skill. By symmetry, percentiles equally distant from the median should
exhibit the same population elasticity. For example, the 1st and 99th percentile skill types should exhibit the
(same) highest population elasticity. In their empirical work, Eeckhout, Pinheiro, and Schmidheiny (2014)
use cost-of-living-adjusted wages to measure skill and identify thicker tails in larger cities at the 10th and 90th
percentiles. However, their predictions do not hold throughout the skill distribution. Any partition of skills
into three groups with equal-sized low and high groups should yield U-shaped population elasticities. Table
3 rejects this prediction for a benchmark case of three groups of approximately equal size: the population
elasticities of the high-school-or-less and bachelors-or-more groups are not close to equal. Instead, population
elasticities are monotonically increasing in educational attainment, consistent with our prediction. Looking
at the nine-skill case in Table 5, we see that the median skill in the United States is a college dropout,
which has a considerably higher population elasticity than high school graduates (0.997 vs. 0.925). This
is at odds with the Eeckhout, Pinheiro, and Schmidheiny (2014) prediction. Moreover, Table 5 shows that
the elasticities are monotonically increasing for high school graduates through professional degrees, which
jointly account for 87 percent of the labor force. While the population elasticity of professional degrees is
greater than that for PhDs (1.113 vs. 1.069), neither their theory nor ours predicts this modest decline.

30



lot of the data, so we should not expect perfection. They predict, for example, that the

number of associate’s degree divided by the number of college dropouts will be higher in Des

Moines than Kalamazoo, because the former’s population is 3,000 residents larger. When

making pairwise comparisons across all 270 metropolitan areas, the success rates are 61 and

64 percent, respectively, and highly statistically significant. Aggregating raises the success

rates, consistent with binning reducing the influence of idiosyncratic errors. When using five

bins or fewer, these success rates exceed 75 percent. As suggested by the elasticity test, the

success rate is higher when restricting attention to US-born individuals. These results are all

statistically significant at the 1-percent level, except for the 2-bin case with all individuals,

which is significant at the 10-percent level.

Both our empirical tests demonstrate strong support for our theory’s predictions. In gen-

eral, more educated individuals are relatively more prevalent in larger cities. The nine-skill-

group predictions are far more detailed than prior descriptions of cities’ skill distributions.

The high population elasticity of those not reaching high school does not match our model;

however, these individuals are a small fraction of the population and are overwhelmingly

foreign-born. International immigrants are particularly attracted to large cities; we show

that these outliers are absent in 1980, when US-born individuals were a much larger share

of the least-skilled group. The outliers in 2000 dampen the success rate of the pairwise com-

parisons, but our model’s predictions are an apt description of the broad pattern and highly

statistically significant. Thus, our theory provides stronger and more detailed predictions

about skill patterns across cities than prior work and, on the whole, the US data strongly

support those predictions.
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Table 6: Pairwise comparisons of nine skill groups

Total Success rate Success rate
Bins comparisons All US-born

270 1,307,340 0.61 0.64
(0.00) (0.00)

90 144,180 0.66 0.71
(0.00) (0.00)

30 15,660 0.72 0.77
(0.00) (0.00)

10 1,620 0.74 0.81
(0.00) (0.00)

5 360 0.76 0.85
(0.00) (0.00)

3 108 0.75 0.88
(0.02) (0.00)

2 36 0.75 0.90
(0.08) (0.01)

Notes: P-values for uniform null hypothesis in parentheses.
Sample is individuals 25 and older in the labor force residing in
270 metropolitan areas. Outcomes weighted by product of
log-population differences and educational population shares.

5.2 Larger cities specialize in skill-intensive sectors

This subsection examines the pattern of sectoral employment across cities. In our theory,

larger cities are relatively more skilled and the sectoral assignment function is common

across cities, so larger cities employ relatively more labor in skill-intensive sectors. Section 5.1

established that larger cities are relatively more skilled, but it need not be the case that larger

cities specialize in skill-intensive sectors, since our theory relied on a number of assumptions

to obtain this result. We now examine whether larger cities are relatively specialized in skill-

intensive sectors. Since employment levels in both industries and occupations are readily

available in the data, we test the employment implications of Proposition 1b.

5.2.1 The distribution of occupations across cities

We first implement the elasticities test and the pairwise comparisons test interpreting sectors

as occupations.47 We begin with a visualization of the elasticity results. Define the skill

47While there is a long line of literature looking at cities’ industrial composition, occupational composition
has been little studied. A notable exception is Duranton and Puga (2005), who document that larger
cities have more managers per production worker. Our investigation extends their inquiry to many more
occupational categories.
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intensity of an occupation as the average years of schooling of individuals employed in that

occupation. Figure 1 plots the 22 occupational categories’ estimated population elasticities

of employment against these occupational skill intensities.48 Our theory says the population

elasticity of occupational employment should rise with skill intensity and indeed we see a

clear positive relationship.49 Outliers in the figure include close-to-unitary elasticities for

the relatively skilled occupations in education, healthcare, and social services, which may

reflect non-traded status. On the other side, computer and mathematical occupations have

an elasticity that is quite high relative to their average years of schooling.

We can also look at this more formally. With the population elasticities of occupations

in hand, the hypothesis that βσ ≥ βσ′ ⇐⇒ σ ≥ σ′ involves 231 (= 22× 21/2) comparisons

of the estimated coefficients.50 This hypothesis is rejected at the 5-percent significance level

in only 46 of the 231 such comparisons. The occupational elasticity results are broadly

consistent with our prediction that larger cities specialize in skill-intensive activities.

The results for pairwise comparisons for occupations appear in Table 7.51 Using 276

cities and 22 occupational categories to make more than 8 million pairwise comparisons

yields an average success rate of 57 percent.52 While far from perfect, our model’s predictive

power over these millions of pairs of cities and occupations is highly statistically significant.

As we increase the number of cities per bin, the success rate increases up to 75 percent,

as idiosyncratic errors are averaged out to reveal the central tendency of the data. These

results are statistically significant across all levels of aggregation.

Thus, both the estimated population elasticities and pairwise comparisons reveal a broad

and strong tendency for more populous metropolitan areas to employ relatively more indi-

viduals in skill-intensive occupations.

48These elasticities are estimated without including zero-employment observations. The results obtained
when including those observations are similar.

49Studies of international trade have characterized an analogous relationship by regressing country-sectoral
exports on country fixed effects, sectoral fixed effects, and the interaction of measures of sectoral factor
intensity and country factor abundance (e.g., Romalis 2004; Nunn 2007). Estimating ln f(σ, c) = ασ + αc +

β (skill (σ)× lnL(c)) + εσ,c in our setting yields a β̂ coefficient of 0.030 with a standard error of 0.003.
50The elasticity estimates appear in Appendix Table E.2.
51With 276 metropolitan areas and bins that are factors of 270, the number of cities per bin may differ by

one.
52These pairwise comparisons omit zero-employment observations. The results obtained when including

those observations are similar.
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Figure 1: Occupations’ population elasticities and skill intensities
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Table 7: Pairwise comparisons of occupations
Total

Bins comparisons Success rate

276 8,073,382 0.57
(0.00)

90 925,155 0.62
(0.00)

30 100,485 0.63
(0.00)

10 10,395 0.65
(0.00)

5 2,310 0.71
(0.00)

3 693 0.74
(0.00)

2 231 0.75
(0.03)

Notes: P-values for uniform null hypothesis in parentheses.
Outcomes weighted by product of log-population differences and
skill-intensity differences.

34



5.2.2 The distribution of industries across cities

We again implement the elasticities test and the pairwise comparisons test, now interpreting

sectors as industries. Define the skill intensity of an industry as the average years of education

of those employed in that industry. A visualization of the elasticity test appears in Figure 2.53

Again, as predicted by our theory, there is a clear positive relationship so that the population

elasticity of industrial employment is rising with the skill intensity of the industry.54 Testing

the hypothesis that βσ ≥ βσ′ ⇐⇒ σ ≥ σ′ for the 19 industries involves 171 (= 19 ×
18/2) comparisons of these estimated elasticities.55 This hypothesis is rejected in only 33

comparisons, so the elasticity implication holds true for industries about 80 percent of the

time.

The results for pairwise comparisons for industries appear in Table 8. Making more than

6 million pairwise comparisons yields a statistically significant success rate of 61 percent.

Raising the number of cities per bin raises the success rate monotonically and always at a

high level of statistical significance. The success rate rises to 77 percent when contrasting

two bins of large and small cities.

Thus, both the estimated population elasticities and pairwise comparisons reveal a pre-

cise and systematic pattern in which more populous metropolitan areas employ relatively

more individuals in skill-intensive industries.56 Prior work, including Henderson (1983) and

Holmes and Stevens (2004), estimated industries’ population elasticities, although without

having a theoretical foundation for interpreting them. Our theory provides a basis for such

estimation and predicts the ordering of the elasticities based on skill intensities. Other prior

work, namely Henderson (1997), contrasted industrial patterns among large- and medium-

size cities. Our theory implies such comparisons between two or many more groups defined

by cities’ sizes, and our results show that there is precise and systematic empirical content

even as we look at these finer comparisons between (groups of) cities.

53As for occupations, these elasticities are estimated without including zero-employment observations. The
results obtained when including those observations are similar.

54A regression on the interaction of skill intensity and log population, as described in footnote 49, yields
a coefficient of 0.080 with a standard error of 0.008.

55The elasticity estimates appear in Appendix Table E.3.
56We have found broadly similar results when examining industries at a finer level of disaggregation and

when restricting attention to manufacturing industries.
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Figure 2: Industries’ population elasticities and skill intensities
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Table 8: Pairwise comparisons of industries
Total

Bins comparisons Success rate

276 6,469,758 0.61
(0.00)

90 684,855 0.64
(0.00)

30 74,385 0.66
(0.00)

10 7,695 0.71
(0.00)

5 1,710 0.74
(0.00)

3 513 0.74
(0.01)

2 171 0.77
(0.05)

Notes: P-values for uniform null hypothesis in parentheses.
Outcomes weighted by product of log-population differences and
skill-intensity differences.
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5.3 Testing for systematic failures of comparative advantage

Our results for the cross-city distributions of skills, industries, and occupations demonstrate

systematic patterns in line with our theory’s predictions. While demonstrating predictive

power, the pairwise comparisons also fall well short of 100 percent success. This is not

surprising, given that our model’s parsimony stems from making strong assumptions that

omit various features that influence the real world.

An important question is whether our theory’s unsuccessful pairwise predictions are

merely idiosyncratic deviations from the pattern of comparative advantage or are systematic

violations of our predicted pattern. The fact that our pairwise comparisons success rates

increase with the number of cities per bin is consistent with aggregation over idiosyncratic

errors, as shown in Appendix D. We also implement a formal test for systematic violations

of the predicted patterns.

Sattinger (1978) develops an approach to test for such systematic violations in the form

of systematic intransitivity in the pattern of comparative advantage. It is possible for the

data to exhibit, for c > c′ > c′′ and σ > σ′ > σ′′, f(σ,c)
f(σ′,c)

≥ f(σ,c′)
f(σ′,c′)

and f(σ′,c′)
f(σ′′,c′)

≥ f(σ′,c′′)
f(σ′′,c′′)

without exhibiting f(σ,c)
f(σ′′,c)

≥ f(σ,c′′)
f(σ′′,c′′)

. With hundreds of metropolitan areas and dozens of

sectors, it is easy to find three cities and three sectors in the data exhibiting such intransi-

tivity. But do intransitivities arise systematically? Sattinger (1978) shows that if ln f(σ, c)

is a polynomial function of β̂σ and lnL(c), then there can be systematic intransitivity only

if ln f(σ, c) is a function of higher-order interactions of β̂σ and lnL(c). We therefore added

quadratic terms and their interactions to our elasticity regressions. These did little to im-

prove the regression’s adjusted R2, and F-tests yielded p-values that did not come close to

rejecting the null that these additional terms were uninformative. There is no evidence of

systematic intransitivity in comparative advantage. While our theory’s predictive successes

are systematic, the empirical departures from our theory appear to be idiosyncratic.

5.4 Larger cities are larger in all skills and sectors

As described in Section 2, different agglomeration theories have different implications for the

relationship between city size and sectoral employment levels. Localization theories make

the trade-off between industry-specific agglomeration economies and general congestion costs

the foundation of the city-size distribution. Formally, steel cities would come in one size,

textile cities in another, and so on. Localization theories militate against the idea that

larger cities will be larger in all sectors. Our theory, in its baseline form, does not require

that larger cities are larger in all sectors. However, by focusing on urbanization economies,

our theory allows that large cities may be the largest site of economic activity for all sectors
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(Proposition 2). Our empirical exercise in this sub-section asks what weight should be placed

on the predictions flowing from the localization and urbanization archetypes.

We have already shown that larger cities have relatively larger numbers of skilled workers.

We now investigate whether larger cities also tend to have larger populations of all skill types.

They certainly do, as all the population elasticities reported in Tables 3 and 5 are strongly

positive. Among the nine educational categories, the prediction that c > c′ ⇒ f(ω, c) ≥
f(ω, c′) is true in 88 percent of 326,835 cases. The largest metropolitan area, New York,

has the largest population in all educational categories, except the least skilled “less than

high school” category, which is most populous in the second-largest metropolitan area, Los

Angeles. Among US-born individuals, New York has the largest population in all nine

educational categories.

Turning to sectors, larger cities tend to have larger sectoral employment in all activi-

ties. This tendency is clear from the population elasticities plotted in Figures 1 and 2, as

they are all strongly positive. Among the 19 2-digit NAICS industries, the prediction that

c > c′ ⇒ f(σ, c) ≥ f(σ, c′) is true in 86 percent of 721,050 cases. Sixteen industries attain

their maximal size in the largest metropolitan area (New York). The three exceptions are

manufacturing (second-largest Los Angeles), mining (tenth-largest Houston), and forestry,

fishing, hunting, and agriculture support (thirteenth-largest Seattle). The analogous results

for occupational categories show a similar tendency for larger cities to have higher employ-

ment levels in all occupations. The c > c′ ⇒ f(σ, c) ≥ f(σ, c′) prediction holds true in

89 percent of occupational comparisons, and 19 of the 22 occupations attain their maximal

size in the largest metropolitan area, New York. The exceptions are production occupations

(Los Angeles), architecture and engineering occupations (fifth-largest San Francisco), and

farming, fishing, and forestry occupations (51st-largest Fresno).

These findings are more consistent with urbanization economies than localization mech-

anisms at the city level. While particular examples such as San Francisco’s concentration

of architecture and engineering occupations may be consistent with localization economies,

the very large majority of sectors exhibit larger employment levels in more populous cities.

Our theory, which parsimoniously assumes only urbanization economies, matches the data

on cities’ sectoral composition and sectoral sizes quite well relative to existing models.

6 Discussion and conclusions

In this paper, we introduce a model that simultaneously characterizes the distribution of

skills and sectors across cities. We describe a high-dimensional economic environment that

is a system of cities in which cities’ internal geographies exhibit substantive heterogeneity and
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individuals’ comparative advantage governs the distribution of sectoral employment. Our

model achieves two aims. First, we obtain “smooth” predictions, in the sense that cities’

skill and sectoral distributions will be highly overlapping. These are more realistic than

prior theories describing cities that are perfectly sorted along skills or polarized in terms

of sectoral composition. Second, we obtain “strong” predictions, in the sense that cities’

skill and sectoral distributions will exhibit systematic variation according to the monotone

likelihood ratio property. These are much finer than the predictions of many prior theories

of the spatial organization of economy activity and guide our empirical investigation.

Examining data on US metropolitan areas’ populations, occupations, and industries in

the year 2000 reveals systematic variation in the cross-city distribution of skills and sectors

that is consistent with our theory. Larger cities are skill-abundant. Our results using three

roughly equal-sized categories of educational attainment are quite strong. Even disaggre-

gated to nine educational categories, the cross-city distribution of skills is broadly consistent

with our theory. Larger cities specialize relatively in skill-intensive activities. More skill-

intensive occupations and industries tend to have higher population elasticities of employ-

ment, and in pairwise comparisons, the more skill-intensive sector tends to employ relatively

more individuals in the larger city. Consistent with our approach based on urbanization

economies, larger cities tend to have larger absolute employment in all sectors.

We believe that our framework is amenable to both theoretical and empirical applica-

tions and extensions. The “strong” character of our predictions and their demonstrated

relevance for describing US cities in 2000 suggest that their examination in other set-

tings, such as economies at different stages of development or in different historical pe-

riods, would be interesting. The “smoothness” resulting from the simultaneous consid-

eration of cross- and within-city heterogeneity in a continuum-by-continuum environment

would make our model amenable to theoretical analyses of the consequences of commuting

costs, globalization, and skill-biased technical change. For example, skill-biased technologi-

cal change has consequences for both the wage distribution and the land-rent distribution in

our model. Technological change, in the form of a change from B(σ) to B′(σ), is skill-biased

if B′(σ′)B(σ) ≥ B′(σ)B(σ′) ∀σ′ ≥ σ. Such a shift increases both wage inequality and rent

inequality, in the sense that G′(ω′)
G′(ω)

≥ G(ω′)
G(ω)

∀ω′ ≥ ω and
r′Γ(γ′)

r′Γ(γ)
≥ rΓ(γ′)

rΓ(γ)
∀γ′ ≥ γ.57 In models

in which individuals are indifferent across all locations within a city, the rent gradient is

invariant to the wage distribution. In our assignment model of differentiated locations, the

composition of income growth governs the consequences for less-skilled individuals’ housing

57Analogous to our result linking rent inequality to wage inequality, Clemens, Gottlieb, Hemous, and Olsen
(2018) propose an assignment model in which greater income inequality among consumers causes greater
income inequality among their producers of vertically differentiated services.
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costs.58

In short, our theoretical approach provides a new perspective on the comparative advan-

tage of cities that aligns well with the patterns of specialization documented in our empirical

work.

58Couture, Gaubert, Handbury, and Hurst (2019) quantify such welfare implications of income growth by
introducing idiosyncratic preferences shocks to a model of urban spatial sorting. In line with our logic, they
find that income growth at the top of the distribution raises low-income households’ rents much less than
broad-based income growth.
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A Appendix: Theory

A.1 Autarkic equilibrium

Suppose the entire population lives in a single city, denoted c. It has an exogenous population

L(c) and skill distribution F (ω). With fixed population, autarky TFP is fixed by equation

(5).

Lemma 6 (Autarky locational assignments). In autarkic equilibrium, there exists a con-

tinuous and strictly decreasing locational assignment function N : T̄ (c) → Ω such that

f(ω, c, τ,M (ω)) > 0 ⇐⇒ N(τ) = ω, N(0) = ω̄ and N(τ̄(c)) = ω.
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This assignment function is obtained by equating supply and demand of locations:

S(τ) = L

∫ τ

0

∫
σ∈Σ

∫
ω∈Ω

f(ω, c, x, σ)dωdσdx

⇒ N(τ) = F−1

(
L(c)− S(τ)

L(c)

)
Given individuals’ equilibrium locations within the city, the schedule of locational rental

prices supporting these assignments comes from combining individuals’ utility-maximizing

decisions and the boundary condition r(c, τ̄(c)) = 0.59

Lemma 7 (Autarky locational prices). In autarkic equilibrium, r(c, τ) is continuously dif-

ferentiable on τ ≥ 0 and given by r(c, τ) = −A(c)
∫ τ̄(c)

τ
T ′(t)G(N(t))dt for τ ≤ τ̄(c).

The properties of interest in a competitive equilibrium are characterized by the assign-

ment functions M : Ω → Σ and N : T̄ (c) → Ω. In the autarkic equilibrium of a single city

with an exogenous population, more skilled individuals work in more skill-intensive sectors

and occupy more desirable locations.

A.2 Amenity interpretation of desirability

The productivity and amenity interpretations of desirability yield very similar results but

differ slightly in notation. In the amenity interpretation, an individual’s productivity and

utility are

q(c, τ, σ;ω) = A(c)H(ω, σ) (A.1)

U(c, τ, σ;ω) = T (τ) [A(c)H(ω, σ)p(σ)− r(c, τ)] (A.2)

where amenity T (τ) determines the value of the individual’s disposable income after paying

his or her locational price.60 In this interpretation, preferences are non-homothetic in a

manner akin to that of Gabszewicz, Shaked, Sutton, and Thisse (1981). Higher-income

individuals are more willing to pay for higher-amenity locations because a more desirable

location complements their higher consumption of tradables.

In this case, instead of γ = A(c)T (τ) = A(c′)T (τ ′) ⇐⇒ r(c, τ) = r(c′, τ ′) = rΓ(γ),

the appropriate equivalence between two locations is their “amenity-amplified price”, which

is T (τ)r(c, τ). So the equivalence statement is now γ = A(c)T (τ) = A(c′)T (τ ′) ⇐⇒
59Note that this boundary condition implies that in equilibrium every individual’s final-good consumption

is strictly positive, provided that H (ω, σ) > 0.
60Recall that the final good is the numeraire.
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T (τ)r(c, τ) = T (τ ′)r(c′, τ ′) = rΓ(γ). The results in lemma 1 are unaltered, though the proof

is modified to use the relevant U(c, τ, σ;ω). The expressions for K : Γ → Ω, γ̄, and γ

are unaltered. This leaves the conclusions of lemmas 2 and 3 intact. The locational price

schedule is given by r(c, τ) = rΓ(A(c)T (τ))
T (τ)

= A(c) rΓ(γ)
γ

.

These locational prices do not appear in the endogenous definition of A(c) nor the proofs

of Lemma 4 and subsequent results. When evaluated at equilibrium, occupied locations’

productivities q(c, τ, σ;ω) = A(c)H(ω, σ) differ across cities in a Hicks-neutral fashion. Thus,

Proposition 1c holds true. As a result, the predictions about cities’ population, sectors, and

productivities described in subsection 3.4 are unaltered by interpreting T (τ) as describing

consumer amenity benefits rather than productivity benefits.

The wage distribution does differ between the productivity and amenity interpretations

of desirability. In the productivity interpretation, productivity q(c, τ, σ;ω) does not vary

across ω-occupied locations in equilibrium, as reported in footnote 24, and p (σ) is common

across locations, so individuals of the same skill earn the same income everywhere. In the

amenity interpretation, an individual’s income p (σ) q(c, τ, σ;ω) is equal to A (c)G (ω), so

individuals of the same skill earn higher nominal incomes in larger cities in equilibrium.

A.3 Cities’ internal geographies

A number of conceivable V (z) schedules satisfy the decreasing-elasticity condition of Propo-

sition 1. We provide some examples here:

Monocentric-city model: For the monocentric city’s disc geography, S(τ) = πτ 2,

with linear transportation costs, T (τ) = d1 − d2τ , the supply of locations within cities

V (z) = 2π
d2

2
(d1 − z) has an elasticity of − z

d1−z , which is decreasing in z.

Exponential family: The exponential family of distributions has PDFs that can be

written in the (canonical) form V (z|η) = v1(z) exp (η · v2(z)− v3(η)), where η and v2(z)

may be vectors. Thus, if V (z) is a member of the exponential family, we are interested in

its elasticity

∂ lnV (z)

∂ ln z
=
∂ ln v1(z)

∂ ln z
+ η · ∇ln zv2(z)

• Exponential: v1(z) = 1 and v2(z) = z. Therefore ∂ lnV (z)
∂ ln z

= ηz and the elasticity is

decreasing because η < 0 for the exponential distribution.

• Weibull: v1(z) = zk−1and v2(z) = zk. Therefore ∂ lnV (z)
∂ ln z

= k − 1 + ηkzk and the

elasticity is decreasing because η = −1
λk

< 0 in the standard expression of Weibull

parameters.
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• Gamma: v1(z) = 1 and v2(z) = [ln z, z]. Therefore ∂ lnV (z)
∂ ln z

= η1 +η2z and the elasticity

is decreasing because n2 = −β < 0 in the standard expression of Gamma parameters.

• Log-normal: v1(z) = 1√
2π

1
z

and v2(z) = [ln z, (ln z)2]. Therefore ∂ lnV (z)
∂ ln z

= −1 + η1 +

2η2 ln z and the elasticity is decreasing because η2 = − 1
2σ2 < 0 in the standard expres-

sion of log-normal parameters.

A.4 Endogenous supply of heterogeneous locations

In the main text, the supply of locations with innate desirability of at least τ is S (τ). This

section relaxes the assumption of an inelastic supply schedule and shows that our main

results still hold.

Let the cost (in units of the numeraire good) of building s units at a location of (inverse)

innate desirability τ be C (s; τ). Profit-maximizing, perfectly competitive landlords build

additional units until rent equals marginal cost.

π (s; τ, c) = rΓ (A (c)T (τ)) s− C (s; τ)

π′ (s; τ, c) = 0 ⇒ rΓ (A (c)T (τ)) = C′ (s; τ)

Let C (s; τ) = sβ

βh(τ)
, where β > 1 and h (τ) is a supply shifter. When h (τ) is greater, the

cost of building a given number of units at τ is lower. Given this functional form, the supply

of units in city c of attractiveness γ is

ln s (γ, c) =
1

β − 1
ln rΓ (γ) +

1

β − 1
ln

(
h

(
T−1

(
γ

A (c)

)))
.

Thus, s (γ, c) is log-supermodular if and only if h (T−1 (γ/A (c))) is log-supermodular in

(γ,A). Note that γ
A

is submodular and log-modular in (γ,A) on R2
+. Thus, this function is

log-supermodular if and only if h (T−1 (z)) has a decreasing elasticity by lemma 8.

Thus, with endogenous supplies of locations, the decreasing-elasticity sufficient condition

of Proposition 1 applies to the schedule of exogenous supply shifters rather than the inelastic

supply schedule. A sufficient condition to obtain the result in Proposition 2 is that h (τ) is

increasing.

B Appendix: Proofs

Proof of Lemma 1:
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Proof. Suppose that ∃τ ′ < τ̄(c) : S(τ ′) > L
∫ τ ′

0

∫
σ∈Σ

∫
ω∈Ω

f(ω, c, x)dωdσdx. Then ∃τ ≤
τ ′ : S ′(τ) > L

∫
σ∈Σ

∫
ω∈Ω

f(ω, c, τ)dωdσ. Then r(c, τ)) = 0 ≤ r(c, τ̄(c)), so U(c, τ, σ;ω) >

U(c, τ̄(c), σ;ω) ∀ω∀σ since T (τ) is strictly decreasing. This contradicts the definition of

τ̄(c), since τ̄(c) is a location that maximizes utility for some individual. Therefore S(τ) =

L
∫ τ

0

∫
σ∈Σ

∫
ω∈Ω

f(ω, c, x)dωdσdx ∀τ ≤ τ̄(c).

Suppose that ∃τ ′, τ ′′ : τ ′ < τ ′′ ≤ τ̄(c) and r(c, τ ′) ≤ r(c, τ ′′). Then U(c, τ ′, σ;ω) >

U(c, τ ′′, σ;ω) ∀ω∀σ since T (τ) is strictly decreasing. This contradicts the result that τ ′′

maximizes utility for some individual. Therefore r(c, τ) is strictly decreasing in τ ∀τ ≤ τ̄(c).

Suppose r(c, τ̄(c)) > 0. Then by its definition as a populated location, ∃ω : A(c)T (τ̄(c))G(ω)−
r(c, τ̄(c)) ≥ A(c)T (τ̄(c) + ε)G(ω) ∀ε > 0. This inequality is false for all ω for sufficiently

small ε, by the continuity of T (τ). Therefore r(c, τ̄(c)) = 0.

Proof of Lemma 2:

This proof is analogous to the proof of lemma 6 below.

Proof of Lemma 3:

Proof. By utility maximization

γG(K(γ))− rΓ(γ) ≥(γ + dγ)G(K(γ))− rΓ(γ + dγ)

(γ + dγ)G(K(γ + dγ))− rΓ(γ + dγ) ≥γG(K(γ + dγ))− rΓ(γ)

Together, these inequalities imply

(γ + dγ)G(K(γ + dγ))− γG(K(γ + dγ))

dγ
≥rΓ(γ + dγ)− rΓ(γ)

dγ
≥ (γ + dγ)G(K(γ))− γG(K(γ))

dγ

Taking the limit as dγ → 0, we obtain ∂rΓ(γ)
∂γ

= G(K(γ)). Integrating from γ to γ and

using the boundary condition rΓ(γ) = 0 yields rΓ(γ) =
∫ γ
γ
G(K(x))dx.

Proof of Lemma 4:

Proof. In city c, the population of individuals with skills between ω and ω + dω is

L

∫ ω+dω

ω

f(x, c)dx = S

(
T−1

(
K−1(ω)

A(c)

))
− S

(
T−1

(
K−1(ω + dω)

A(c)

))
.

Taking the derivative with respect to dω and then taking the limit as dω → 0 yields the

population of ω in c. Using the definition of s(γ, c) yields the desired expression.

Proof of Lemma 5:
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Proof. In city c, the population of individuals employed in sectors between σ and σ + dσ is

L

∫ σ+dσ

σ

f(x, c)dx = S

(
T−1

(
K−1(M−1(σ))

A(c)

))
− S

(
T−1

(
K−1(M−1(σ + dσ))

A(c)

))
.

Taking the derivative with respect to dσ and then taking the limit as dσ → 0 yields the

population employed in σ in c. Using the definition of s(γ, c) yields the desired expression.

Proof of Lemma 6:

Proof. Nearly all of our argument follows the proof of Lemma 1 in Costinot and Vogel

(2010). Define f(ω, c, τ) ≡
∫
σ∈Σ

f(ω, c, τ, σ)dσ. Define Ω(τ) ≡ {ω ∈ Ω|f(ω, c, τ) > 0} and

T (ω) ≡ {τ ∈ [0, τ̄(c)]|f(ω, c, τ) > 0}.

1. T (ω) 6= ∅ by equation (11) and f(ω) > 0. Ω(τ) 6= ∅ ∀τ ≤ τ̄(c) by lemma 1.

2. Ω(τ) is a non-empty interval for τ ∈ [0, τ̄(c)]. Suppose not, such that ω < ω′ < ω′′ with

ω, ω′′ ∈ Ω(τ) and ω′ /∈ Ω(τ). ∃τ ′ : ω′ ∈ Ω(τ ′). Suppose τ ′ > τ. By utility maximization

A(c)T (τ ′)G(ω′)− r(c, τ ′) ≥ A(c)T (τ)G(ω′)− r(c, τ)

A(c)T (τ)G(ω)− r(c, τ) ≥ A(c)T (τ ′)G(ω)− r(c, τ ′)

These jointly imply (T (τ ′)− T (τ))(G(ω′)−G(ω)) ≥ 0, contrary to τ ′ > τ and ω′ > ω.

The τ ′ < τ case is analogous, using ω′ and ω′′. Therefore Ω(τ) is a non-empty interval.

The same pair of inequalities proves that for τ < τ ′ ≤ τ̄(c), if ω ∈ Ω(τ) and ω′ ∈ Ω(τ ′),

then ω ≥ ω′.

3. Ω(τ) is a singleton for all but a countable subset of [0, τ̄(c)]. Since Ω(τ) ⊂ Ω is a

non-empty interval for any τ ∈ [0, τ̄(c)], Ω(τ) is measurable for any τ ∈ [0, τ̄(c)]. Let

T0 denote the subset of locations τ such that µ[Ω(τ)] > 0, where µ is the Lebesgue

measure over R. T0 is a countable set. For any τ ∈ T0, define ω(τ) ≡ inf Ω(τ) and

ω̄(τ) ≡ sup Ω(τ). Because µ[Ω(τ)] > 0, we know ω̄(τ) > ω(τ). Thus, for any τ ∈ T0,

there exists a j ∈ N such that ω̄(τ) − ω(τ) ≥ (ω̄ − ω)/j. From the last result in step

2, we know that for any τ 6= τ ′, µ[Ω(τ) ∩ Ω(τ ′)] = 0. Thus, for any j ∈ N, there can

be at most j elements {τ1, . . . , τj} ≡ T j0 ⊂ T0 for which ω̄(τi) − ω(τi) ≥ (ω̄ − ω)/j

for i = 1, . . . , j. By construction, T0 = ∪j∈NT j0 , where T j0 is a countable set. Since

the union of countable sets is countable, T0 is a countable set. The fact that Ω(τ) is

a singleton for all but a countable subset of [0, τ̄(c)] follows from the fact that T0 is a
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countable set and the fact that only the nonempty intervals of Ω with measure zero

are singletons.

4. T (ω) is a singleton for all but a countable subset of Ω. This follows from the same

arguments as in steps 2 and 3.

5. Ω(τ) is a singleton for τ ∈ [0, τ̄(c)]. Suppose not, such that there exists τ ∈ [0, τ̄(c)] for

which Ω(τ) is not singleton. By step two, Ω(τ) is an interval, so µ[Ω(τ)] > 0, where µ

is the Lebesgue measure over R. By step four, we know that T (ω) = {τ} for µ-almost

all ω ∈ Ω(τ). Hence condition (11) implies

f(ω, c, τ) =f(ω)δDirac[1− 1Ω(τ)] for µ-almost all ω ∈ Ω(τ), (A.3)

where δDirac is a Dirac delta function. Combining equations (9) and (A.3) with

µ[Ω(τ)] > 0 yields S ′(τ) = +∞, which contradicts our assumptions about S(τ).

Step 5 means there is a function N : T → Ω such that f(ω, c, τ) > 0 ⇐⇒ N(τ) = ω.

Step 2 says N is weakly decreasing. Since Ω(τ) 6= ∅ ∀τ ≤ τ̄(c), N is continuous and satisfies

N(0) = ω̄ and N(τ̄(c)) = ω. Step 4 means that N is strictly decreasing on (0, τ̄(c)).

Proof of the explicit expression of N(τ) that follows Lemma 6:

S(τ) = L

∫ τ

0

∫
σ∈Σ

∫
ω∈Ω

f(ω, c, x, σ)dωdσdx

= L

∫ τ

0

∫
ω∈Ω

f(ω)δDirac[x−N−1(ω)]dωdx

= L

∫ τ

0

∫
τ ′
f(N(τ ′))δDirac[x− τ ′]N ′(τ ′)dτ ′dx

= −L
∫ τ

0

f(N(x))N ′(x)dx = L(1− F (N(τ)))

⇒ N(τ) = F−1

(
L− S(τ)

L

)
Proof of Lemma 7:

Proof. By utility maximization

A(c)T (τ)G(N(τ))− r(c, τ) ≥ A(c)T (τ + dτ)G(N(τ))− r(c, τ + dτ)

A(c)T (τ + dτ)G(N(τ + dτ))− r(c, τ + dτ) ≥ A(c)T (τ)G(N(τ + dτ))− r(c, τ)
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Together, these inequalities imply

A(c)T (τ + dτ)G(N(τ))− A(c)T (τ)G(N(τ))

dτ
≤ r(c, τ + dτ)− r(c, τ)

dτ

≤ A(c)T (τ + dτ)G(N(τ + dτ))− A(c)T (τ)G(N(τ + dτ))

dτ

Taking the limit as dτ → 0, we obtain ∂r(c,τ)
∂τ

= A(c)T ′(τ)G(N(τ)). Integrating from τ to

τ̄(c) and using the boundary condition r(c, τ̄(c)) = 0 yields r(c, τ) = −A(c)
∫ τ̄(c)

τ
T ′(t)G(N(t))dt.

In the course of proving Proposition 1, we use the following lemma.

Lemma 8. Let f(z) : R → R++ and g(x, y) : R2
+ → R++ be C2 functions. If g(x, y) is

submodular and log-modular, then f(g(x, y)) is log-supermodular in (x, y) if and only if f(z)

has a decreasing elasticity.

Proof. f(g(x, y)) is log-supermodular in (x, y) if and only if

∂2 ln f (g (x, y))

∂x∂y
=

[
∂ ln f(z)

∂z
gxy +

∂2 ln f(z)

∂z2
gxgy

]
|z=g(x,y)

≥ 0

If g(x, y) is submodular (gxy < 0) and log-modular (g = gxgy
gxy

), this condition can be written

as [
∂ ln f(z)

∂z
+
∂2 ln f(z)

∂z2

gxgy
gxy

]
|z=g(x,y)

=
∂

∂z

[
∂ ln f(z)

∂ ln z

]
≤ 0.

Proof of Proposition 1:

Proof. Recall that the supply of locations with attractiveness γ in city c is

s(γ, c) =


1

A(c)
V
(

γ
A(c)

)
if γ ≤ A(c)T (0)

0 otherwise
.

It is obvious that γ > γ′, c > c′ ⇒ s(γ, c)s(γ′, c′) ≥ s(γ, c′)s(γ′, c) is true when γ > A(c′)T (0).

For γ ≤ A(c′)T (0), the inequality holds true if and only if V
(

γ
A(c)

)
is log-supermodular in

(γ, c). Note that γ
A

is submodular and log-modular in (γ,A) on R2
+. Therefore, by lemma

8, V
(
γ
A

)
is log-supermodular in (γ,A) on R2

+ if and only if V (z) has a decreasing elasticity.

Since A(c) is increasing in c, V
(

γ
A(c)

)
is log-supermodular in (γ, c) on R+ × C if V

(
γ
A

)
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is log-supermodular in (γ,A). Thus, s(γ, c) is log-supermodular if V (z) has a decreasing

elasticity.

Proof of Proposition 2:

Proof. s(γ, c) ≥ s(γ, c′) is trivially true for γ > A(c′)T (0). For γ ≤ A(c′)T (0),

s(γ, c) ≥ s(γ, c′) ⇐⇒ lnV

(
γ

A(c)

)
− lnV

(
γ

A(c′)

)
≥ lnA(c)− lnA(c′)

This condition can be rewritten as∫ lnA(c)

lnA(c′)

−∂ lnV (z)

∂ ln z |z= γ
x

d lnx ≥
∫ lnA(c)

lnA(c′)

d lnx∫ lnA(c)

lnA(c′)

{
−∂ lnV (z)

∂ ln z |z= γ
x

− 1

}
d lnx ≥0

Thus, a sufficient condition for the larger city to have more locations of attractiveness γ

when V (z) has a decreasing elasticity is ∂ lnV (z)
∂ ln z

≤ −1 at z = γ
A(c)

.

C Appendix: Data

Data sources: Our metropolitan population data are from the US Census website (2000).

Our data on individuals’ demographics, educational attainments, geographic locations, and

sectors of employment come from the 5 percent sample of the 2000 US Census and the

1 percent metro sample of the 1980 US Census made available by IPUMS-USA (Ruggles,

Alexander, Genadek, Goeken, Schroeder, and Sobek, 2010). Our data on industrial employ-

ment come from the 2000 County Business Patterns, available from the US Census Bureau

website. Our data on occupational employment come from the 2000 Occupational Employ-

ment Statistics, available from the Burea of Labor Statistics website.

Geography: We use (consolidated) metropolitan statistical areas as defined by the OMB

as our geographic unit of analysis.

The smallest geographic unit in the IPUMS-USA microdata is the public-use microdata

area (PUMA), which has a minimum of 100,000 residents. We map the PUMAs to metropoli-

tan statistical areas (MSAs) using the MABLE Geocorr2K geographic correspondence engine

from the Missouri Census Data Center. In some sparsely populated areas, a PUMA is larger

than a metropolitan area. We drop six MSAs in which fewer than half of the residents of

the only relevant PUMA live within the metropolitan area. As a result, there are 270 MSAs

when we use these microdata.
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The 1980 Census of Population IPUMS-USA microdata do not identify PUMAs, so we

use the “metarea” variable describing 270 consolidated MSAs for the regressions in Table

E.1.

The County Business Patterns data describe 318 metropolitan statistical areas. These

correspond to a mix of OMB-defined primary and consolidated metropolitan statistical ar-

eas outside New England and New England county metropolitan areas (NECMAs). We

aggregate these into OMB-defined (consolidated) metropolitan statistical areas to obtain

276 MSAs.

The Occupational Employment Statistics data describe 331 (primary) metropolitan sta-

tistical areas. We aggregate these into OMB-defined (consolidated) metropolitan statistical

areas to obtain observations for 276 MSAs.

Skill distribution: Our sample of individuals in the IPUMS data includes those 25

and older in the labor force. We exclude individuals living in group quarters. Using the

“educd” variable from IPUMS, we construct nine levels of educational attainment: less than

high school (educd values 2-24), high school dropout (30-61), high school graduate (62),

college dropout (65, 71), associate’s degree (81), bachelor’s degree (101), master’s degree

(114), professional degree (115), and doctorate (116). There is at least one observation in

every educational category in every metropolitan area. In Appendix E, we report robustness

checks using a narrower sample of IPUMS observations: full-time full-year (FTFY) workers,

defined as individuals 25 and older who reported working at least 35 hours per week and 40

weeks in the previous year.

In Appendix E, we report robustness checks using aggregate tabulations from the Census

of Population, Summary File 3, available from the US Census website. These tabulations

are less noisy than the IPUMS observations, because they come from the 1-in-6 Census long

form rather than the 1-in-20 public-use microdata. Because they are aggregate tabulations,

we cannot condition on individual characteristics like labor-force participation or birthplace.

Sectoral skill intensity: Using the same sample of individuals 25 and older in the labor

force, we measure a sector’s skill intensity by calculating the average years of schooling of its

employees after controlling for spatial differences in average schooling. We calculate years

of schooling using the educational attainment “educd” variable from IPUMS at its finest

level of disaggregation. For instance, this means that we distinguish between those whose

highest educational attainment is sixth grade or eighth grade. We use the “indnaics” and

“occsoc” variables to assign individuals to their 2-digit NAICS and 2-digit SOC sectors of

employment. Aggregating observations to the MSA-sector level, weighted by the IPUMS-

provided person weights, we regress the average years of schooling on MSA and sectoral

dummies. The sectoral dummy coefficients are our measure of skill intensities.
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Industrial employment: There are 19 2-digit NAICS industries covered by both the

Census of Population microdata and the County Business Patterns data (the latter omits

public administration, NAICS 92). The County Business Patterns data are an almost exhaus-

tive account of US employer establishments. When necessary to protect the confidentiality of

individual establishments, employment in an industry in a location is censored and reported

as falling within an interval rather than its exact number. In our empirical work, we use the

midpoints of these intervals as the level of employment. There are four (C)MSAs that have

zero establishments in mining; the remaining 5240 (= 19 × 276 − 4) industry-metropolitan

pairs have at least one establishment. The County Business Patterns data omit self-employed

individuals and employees of private households, railroads, agriculture production, the postal

service, and public administrations. See the CBP methodology webpage for details.

Occupational employment: There are 22 2-digit SOC occupations. Across 331 (P)MSAs,

there should be 7282 metropolitan-occupation observations. The 2000 BLS Occupational

Employment Statistics contain employment estimates for 7129 metropolitan-occupation ob-

servations, none of which are zero. The 153 omitted observations “may be withheld from

publication for a number of reasons, including failure to meet BLS quality standards or the

need to protect the confidentiality of [BLS] survey respondents.”

D Appendix: Empirical Tests

D.1 Population elasticities and pairwise comparisons

This section describes the relationship between our two empirical tests in more detail.

If f(ν, c) is log-supermodular and f(ν, c) > 0 ∀ν∀c,

ν > ν ′, c > c′ ⇒ ln f(ν, c) + ln f(ν ′, c′) ≥ ln f(ν ′, c) + ln f(ν, c′).

If C and C ′ are distinct sets and C is greater than C ′ (infc∈C L(c) > supc′∈C′ L(c′)) and nC is the

number of elements in C while nC′ is the number of elements in C ′, then log-supermodularity

of f(ν, c) implies

1

nC

∑
c∈C

ln f(ν, c) +
1

nC′

∑
c′∈C′

ln f(ν ′, c′) ≥ 1

nC

∑
c∈C

ln f(ν ′, c) +
1

nC′

∑
c′∈C′

ln f(ν, c′) for ν > ν ′

Suppose that the world is noisy. Consider the following form for f(ν, c), which is a

55

http://www.census.gov/econ/cbp/methodology.htm
http://www.bls.gov/oes/oes_ques.htm
http://www.bls.gov/oes/oes_ques.htm


first-order approximation for any form,

ln f(ν, c) =αν + βν lnLc + εν,c

where εν,c is an error term with E(εν,c) = 0. The probability of obtaining the expected

inequality when ν > ν ′, C > C ′ is

P = Pr

(
1

nC

∑
c∈C

ln f(ν, c) +
1

nC′

∑
c′∈C′

ln f(ν ′, c′) ≥ 1

nC

∑
c∈C

ln f(ν ′, c) +
1

nC′

∑
c′∈C′

ln f(ν, c′)

)

= Pr

(
1

nC

∑
c∈C

[εν′,c − εν,c] +
1

nC′

∑
c′∈C′

[εν,c′ − εν′,c′ ] ≤ (βν − βν′)
[
ln L̄C − ln L̄C′

])

where ln L̄C′ denotes an average log population, ln L̄C′ ≡ 1
nC′

∑
c′∈C′ lnLc′ . This probability

is higher when there is a larger difference in population size between the two bins and when

the difference in population elasticities, βν−βν′ , is larger. Since log-supermodularity implies

that βν is increasing in ν, this probability is higher when the difference ν − ν ′ is larger.

To illustrate the properties of this probability, consider the special case in which the

error term is normally distributed, εν,c
iid∼ N (0, σ2). Then 1

nC

∑
c∈C [εν′,c − εν,c] is distributed

N
(

0, 2σ2

nC

)
. Thus, the left side of the inequality inside the probability is distributedN

(
0, 2

[
1
nC

+ 1
nC′

]
σ2
)

.

Therefore, we can write that the left side divided by

√
2
[

1
nC

+ 1
nC′

]
σ2 is distributed standard

normal, N (0, 1). Thus, the probability of obtaining the expected inequality is

P =Ω

 (βν − βν′)√
2
[

1
nC

+ 1
nC′

]
σ2

[
ln L̄C − ln L̄C′

]
where Ω(·) denotes the cumulative distribution function of N (0, 1). If nC equals nC′ , the

expression for P simplifies to

P =Ω

( √
nC

2
√
σ2
· (βν − βν′) ·

[
ln L̄C − ln L̄C′

])
.

The probability of obtaining the inequality depends on the difference in population size(
ln L̄C − ln L̄C′

)
, the difference in population elasticities (βν − βν′), the noisiness (σ2) of the

relationship, and the number of cities aggregated (nC). When the deterministic function is
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log-supermodular (c > c′ ⇒ Lc ≥ Lc′ ; ν > ν ′ ⇒ βν ≥ βν′), P → 1 as σ2 → 0 (and P → 1/2 as

σ → ∞). When the function is log-modular, P → 1/2 as σ2 → 0, and when the function is

log-submodular, P → 0 as σ2 → 0. As nC increases (as we aggregate cities into fewer bins),

it becomes more likely that we obtain the expected inequality. However, using fewer bins

also decreases the number of times that we evaluate this inequality, so we will tend to have

lower power to reject the null hypothesis that f(ν, c) is log-modular.

Our finding that βν is increasing in ν when estimated in the population elasticity test

implies that this pairwise comparison test will tend to have the correct inequality, and its

success rate will increase with differences in city size and aggregation. The success of the

elasticity test implies success of the pairwise comparison test (with aggregation) to the extent

that the log-linear approximation of f(ν, c) is a good approximation. At the same time,

σ2 � 0, so we should not expect the pairwise comparison test to have a 100-percent success

rate. We use an exact test to compute the probability of obtaining our observed success

rates under the null hypothesis that the deterministic function is log-modular (βν = β ∀ν).

D.2 P-values for pairwise comparisons test

To assess the statistical significance of the fraction of these pairwise comparisons that yield

the expected inequality, we compute the probability of obtaining a success rate at least

as high as the observed success rate under the null hypothesis that skills and sectors are

uniformly distributed across metropolitan areas. To do so, we employ a permutation test,

shuffling the microdata observations to construct cities of the true population size with

randomly assigned skill and sectoral distributions. For example, we shuffle the 4.4 million

individuals in our IPUMS microdata sample to randomly assign them to metropolitan areas.

We then perform the relevant pairwise comparisons test and record its success rate. We re-

peat this process 1000 times, yielding a cumulative distribution for the pairwise comparisons

test’s success rate under the null hypothesis. This distribution is centered around 0.5, and

the p-value assigned to a success rate is the fraction of success rates in the cumulative distri-

bution simulated under the null hypothesis that exceed the observed rate. When there are

more observations (more bins, more educational categories, etc), the cumulative distribution

exhibits less dispersion, yielding a more powerful test.
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E Appendix: Empirical results

E.1 US-born and foreign-born skill distributions

Table 5 shows that more educated skill groups generally have higher population elasticities:

the population elasticity of professionals exceeds that of bachelor’s degree holders, which

exceeds that of associate’s degree holders, and so forth. In this appendix subsection, we

investigate outliers that deviate from this broad pattern.

In particular, the population elasticity of those never reaching high school is 1.089. This

skill group constitutes about 4 percent of the population and is overwhelmingly foreign-born.

The second column of Table 5 reveals that its high population elasticity is attributable to

the presence of foreign-born individuals with low educational attainment in larger cities.

How should we interpret the difference between the spatial distribution of skills among the

population as a whole and among US-born individuals? One possibility is that immigrants

strongly prefer larger cities for reasons omitted from our model, causing less-skilled foreign-

born individuals to disproportionately locate in larger cities. This would be consistent with

an established literature that describes agglomeration benefits particular to unskilled foreign-

born individuals, such as linguistic enclaves (Edin, Fredriksson, and Aslund, 2003; Bauer,

Epstein, and Gang, 2005).61

Eeckhout, Pinheiro, and Schmidheiny (2014) articulate another possibility, in which an

economic mechanism they term “extreme-skill complementarity” causes less skilled individ-

uals, foreign-born or US-born, to disproportionately reside in larger cities. Since this theory

is silent with regard to birthplace, it predicts that in the absence of foreign-born low-skilled

individuals, US-born low-skilled individuals would disproportionately locate in larger cities.

We attempt to distinguish between these hypotheses by looking at the skill distributions

of US cities two decades earlier. In 2000, foreign-born individuals were 11 percent of the

US population, while in 1980 they constituted about 6 percent (Gibson and Jung, 2006).

More importantly, in 2000, foreign-born individuals constituted 71 percent of the least-skilled

group, while in 1980 they were only 27 percent. If our hypothesis that less-skilled foreign-

born individuals are particularly attracted to larger cities is correct, then the population

elasticity of less-skilled types should be lower when foreign-born shares are lower. Table

E.1 demonstrates that this is the case in 1980.62 It does not provide any evidence that the

61Another potential mechanism is that immigrants may find larger cities’ combination of higher nominal
wages and higher housing prices more attractive than natives (Diamond, 2016), possibly because they remit
their nominal incomes abroad or demand less housing than US-born individuals. Albert and Monras (2018)
study this mechanism in detail.

62The educational categories in Table E.1 differ from prior tables because Census microdata collected prior
to 1990 identify coarser levels of educational attainment in terms of years of schooling rather than highest
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least skilled were overrepresented in larger cities in 1980, among either the population as a

whole or US-born individuals. Reconciling these results with the birthplace-neutral model

of Eeckhout, Pinheiro, and Schmidheiny (2014) would require that the production function

changed from top-skill complementarity in 1980 to extreme-skill complementarity in 2000.

The contrast in the least-skilled population elasticities between 1980 and 2000 for the

population as a whole overwhelmingly reflects the increasing foreign-born share in the least-

skilled groups. For foreign-born individuals with less than high school education, the popula-

tion elasticities were 1.46 in 1980 and 1.43 in 2000. For US-born individuals, these population

elasticities were 0.89 in 1980 and 0.86 in 2000. That is, these birthplace-specific elasticities

hardly budged over twenty years. What changed was the foreign-born share: the vast major-

ity of the difference in population elasticities for the less-than-high-school skill group in 1980

and 2000 is due to its increasingly foreign-born composition. If the total less-than-high-school

population were its year-2000 size and exhibited the foreign-born and US-born population

elasticities estimated for the year 2000, but the share of this group that was US-born were

its 1980 share (73%) rather than its 2000 share (29%), the less than high school group’s

population elasticity would be 0.944. This is close to the population elasticity of 0.974 es-

timated using the 1980 data. Thus our model’s poor prediction of the less-than-high-school

population elasticity in 2000 is attributable to large cities being particularly attractive to

foreign-born individuals.

E.2 Sectoral population elasticities

Tables E.2 and E.3 report the population elasticities estimates depicted in Figures 1 and 2,

along with the accompanying standard errors. Table E.3 also reports elasticities estimated

using only city-industry employment levels that are not censored by being reported as falling

within an interval in the County Business Patterns data.

degree attained.
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Table E.1: Population elasticities of seven skill groups, 1980

(1) (2) Population Share
Dependent variable: ln f(ω, c) All US-born share US-born
βω1 Less than high school × log population 0.974 0.890 0.09 0.73

(0.0244) (0.0269)
βω2 High school dropout × log population 1.017 0.995 0.13 0.92

(0.0165) (0.0187)
βω3 Grade 12 × log population 0.993 0.974 0.34 0.93

(0.0101) (0.0119)
βω4 1 year college × log population 1.055 1.041 0.10 0.94

(0.0162) (0.0166)
βω5 2-3 years college × log population 1.093 1.074 0.12 0.92

(0.0154) (0.0155)
βω6 4 years college × log population 1.106 1.088 0.11 0.92

(0.0171) (0.0177)
βω7 5+ years college × log population 1.134 1.114 0.11 0.90

(0.0216) (0.0215)

Notes: Standard errors, clustered by MSA, in parentheses. Sample is individuals 25
and older in the labor force residing in 270 metropolitan areas in 1980.

Table E.2: Occupational employment population elasticities

βσ1 Farming, Fishing, and Forestry Occupations 0.807 βσ12 Sales and Related Occupations 1.035
(0.0470) (0.00917)

βσ2 Building and Grounds Cleaning and Maintenance Occupations 1.038 βσ13 Management Occupations 1.080
(0.0103) (0.0143)

βσ3 Food Preparation and Serving Related Occupations 0.984 βσ14 Arts, Design, Entertainment, Sports, and Media Occupations 1.157
(0.0104) (0.0189)

βσ4 Construction and Extraction Occupations 1.035 βσ15 Business and Financial Operations Occupations 1.202
(0.0138) (0.0177)

βσ5 Production Occupations 1.040 βσ16 Computer and Mathematical Occupations 1.393
(0.0250) (0.0335)

βσ6 Transportation and Material Moving Occupations 1.058 βσ17 Architecture and Engineering Occupations 1.205
(0.0135) (0.0255)

βσ7 Installation, Maintenance, and Repair Occupations 1.012 βσ18 Healthcare Practitioners and Technical Occupations 0.998
(0.0110) (0.0139)

βσ8 Healthcare Support Occupations 0.977 βσ19 Community and Social Services Occupations 0.982
(0.0130) (0.0199)

βσ9 Personal Care and Service Occupations 1.064 βσ20 Education, Training, and Library Occupations 1.010
(0.0170) (0.0168)

βσ10 Office and Administrative Support Occupations 1.079 βσ21 Life, Physical, and Social Science Occupations 1.166
(0.00999) (0.0295)

βσ11 Protective Service Occupations 1.120 βσ22 Legal Occupations 1.198
(0.0140) (0.0221)

Notes: Standard errors, clustered by MSA, in parentheses.

60



Table E.3: Industrial employment population elasticities

(1) (2) (1) (2)
βσ1 Forestry, fishing, hunting, and agriculture support 0.774 0.660 βσ11 Utilities 0.999 0.917

(0.0546) (0.142) (0.0338) (0.0545)

βσ2 Accommodation and food services 0.992 0.991 βσ12 Arts, entertainment and recreation 1.130 1.125
(0.0125) (0.0129) (0.0220) (0.0251)

βσ3 Construction 1.059 1.057 βσ13 Mining 0.829 0.633
(0.0158) (0.0160) (0.0621) (0.122)

βσ4 Admin, support, waste mgt, remediation services 1.200 1.207 βσ14 Health care and social assistance 0.946 0.946
(0.0206) (0.0195) (0.0127) (0.0127)

βσ5 Transportation and warehousing 1.178 1.175 βσ15 Finance and insurance 1.170 1.167
(0.0253) (0.0264) (0.0206) (0.0215)

βσ6 Other services (except public administration) 1.032 1.032 βσ16 Information 1.171 1.184
(0.0109) (0.0110) (0.0216) (0.0248)

βσ7 Retail trade 0.961 0.962 βσ17 Management of companies and enterprises 1.506 1.406
(0.00739) (0.00713) (0.0435) (0.0469)

βσ8 Manufacturing 0.979 0.973 βσ18 Professional, scientific and technical services 1.263 1.267
(0.0293) (0.0296) (0.0174) (0.0177)

βσ9 Wholesale trade 1.165 1.159 βσ19 Educational services 1.203 1.205
(0.0193) (0.0190) (0.0346) (0.0391)

βσ10 Real estate and rental and leasing 1.162 1.160
(0.0142) (0.0145)

Observations 5,240 4,295 Observations 5,240 4,295
Only uncensored observations Yes Only uncensored observations Yes

Notes: Standard errors, clustered by MSA, in parentheses.

61



E.3 Skill distribution: Alternative inclusion criteria

In the main text, we describe the skill distribution using labor-force participants 25 and

older. Tables E.4 through E.6 demonstrate that we obtain similar results when using alter-

native inclusion criteria. First, we use a broader sample of individuals, counting everyone 25

and older regardless of labor-force participation. For this, we use aggregate tabulations of

population over 25 by educational attainment from the Census of Population, Summary File

3. Second, we use a narrower sample of individuals, restricting attention to the population

of full-time full-year (FTFY) workers 25 and older in the IPUMS microdata.

Table E.4: Skill groups by educational attainment
Summary File 3 IPUMS FTFY Share Summary File 3 IPUMS FTFY Share

Skill (3 groups) population share population share US-born Skill (9 groups) population share population share US-born
High school or less .46 .35 .79 Less than high school .07 .03 .27

High school dropout .12 .07 .73
High school graduate .27 .24 .88

Some college .28 .32 .89 College dropout .21 .24 .90
Associate’s degree .06 .08 .88

Bachelor’s or more .27 .34 .85 Bachelor’s degree .17 .21 .87
Master’s degree .06 .08 .84
Professional degree .02 .03 .82
Doctorate .01 .01 .72

Notes: “Summary File 3” denotes 2000 Census of Population Summary File 3 tabulations of
populations 25 and older by educational attainment for 270 metropolitan areas. “IPUMS
FTFY” denotes full-time, full-year employees 25 and older residing in 270 metropolitan areas in
IPUMS Census of Population microdata. The “share US-born” columns are computed using the
IPUMS FTFY microdata.

Table E.5: Population elasticities of three skill groups

(1) (2) (3)
SF3 IPUMS FTFY IPUMS FTFY

Dependent variable: ln f(ω, c) All All US-born

βω1 High school or less × log population 0.976 0.955 0.899
(0.00984) (0.0110) (0.0160)

βω2 Some college × log population 1.010 0.999 0.973
(0.00770) (0.0105) (0.0123)

βω3 Bachelor’s or more × log population 1.093 1.097 1.068
(0.0125) (0.0152) (0.0163)

Notes: Standard errors, clustered by MSA, in parentheses. Column 1 sample is Summary File
3 tabulations of populations by educational attainment. Column 2 sample is full-time, full-year
employees 25 and older residing in 270 metropolitan areas in IPUMS Census of Population
microdata. Column 3 is the column 2 sample restricted to individuals born in the United States.
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Table E.6: Population elasticities of nine skill groups

(1) (2) (3)
SF3 IPUMS FTFY IPUMS FTFY

Dependent variable: ln f(ω, c) All All US-born

βω1 Less than high school × log population 1.026 1.119 0.877
(0.0221) (0.0336) (0.0270)

βω2 High school dropout × log population 1.012 1.014 0.941
(0.0146) (0.0156) (0.0193)

βω3 High school graduate × log population 0.953 0.927 0.893
(0.0111) (0.0135) (0.0168)

βω4 College dropout × log population 1.010 1.002 0.977
(0.00838) (0.0113) (0.0131)

βω5 Associate’s degree × log population 1.013 0.999 0.968
(0.0121) (0.0142) (0.0155)

βω6 Bachelor’s degree × log population 1.096 1.098 1.070
(0.0119) (0.0148) (0.0165)

βω7 Master’s degree × log population 1.094 1.117 1.085
(0.0155) (0.0178) (0.0184)

βω8 Professional degree × log population 1.115 1.105 1.076
(0.0139) (0.0170) (0.0180)

βω9 PhD × log population 1.079 1.080 1.031
(0.0282) (0.0334) (0.0315)

Notes: Standard errors, clustered by MSA, in parentheses. Column 1 sample is Summary File
3 tabulations of populations by educational attainment. Column 2 sample is full-time, full-year
employees 25 and older residing in 270 metropolitan areas in IPUMS Census of Population
microdata. Column 3 is the column 2 sample restricted to individuals born in the United States.
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E.4 Skill distribution: Inferring skills from wages

In the main text, we use educational attainment as a proxy for skill, assuming that the dis-

tribution of skills increases with educational attainment. In this section, we infer skills from

nominal wages. The theoretically appropriate wage measure differs between the productivity

and amenity interpretations of a location’s desirability.

In the productivity interpretation of the desirability of a location, individuals of the same

skill earn the same income, K−1 (ω)G (ω), everywhere they locate in equilibrium. Since both

locational assignments K and the skill component of income G are strictly increasing func-

tions, there is a one-to-one mapping between wages and skill. Thus, if the skill distribution

f (ω, c) is log-supermodular, the number of people earning a given wage in a city is also

log-supermodular in the wage and city population size. If we divide individuals into twenty

wage ventiles, there should be relatively more people in the higher wage ventiles in larger

cities.

In the amenity interpretation of desirability, individuals of the same skill earn different

incomes in different cities. As shown in Appendix A.2, an individual of skill ω in city c has

a nominal income of A (c)G (ω), which obviously varies with city c. Thus, nominal wages

alone cannot be used to infer an individual’s skill. Within a city, the relative income of two

skill types is independent of the city, A(c)G(ω)
A(c)G(ω′)

= G(ω)
G(ω′)

. In our model, the least skilled type ω

is present in all cities. Thus, if we normalize all observed incomes by the least skilled type’s

income in each city, we can compare the distributions of these normalized incomes across

cities. To do so empirically, we normalize wages in each city relative to the fifth percentile

wage in that city and compute national ventiles of this normalized wage distribution. There

should be relatively more people in the higher normalized-wage ventiles in larger cities.

Table E.7 reports the estimated population elasticities of these wage ventiles for the

productivity and amenity interpretations for both the entire population and US-born in-

dividuals. These population elasticities are almost always monotonically increasing across

wage ventiles. The sole statistically significant exception is the first ventile. The five percent

of the population that earns the lowest nominal wages are overrepresented in larger cities

relative to our model’s predictions. But the overwhelming majority of the wage distribution

exhibits log-supermodularity, in line with our theory.

E.5 Pairwise comparisons: Alternative weighting schemes

In the main text, we report the success rate for the pairwise comparisons test as a weighted

average of the share of pairwise comparisons that yield the predicted inequality. As shown in

Appendix D, in the presence of idiosyncratic errors, the predicted inequality should hold with
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Table E.7: Population elasticities of wage ventiles
(1) (2) (3) (4)

productivity interpretation amenity interpretation

All US-born All US-born

βω1 wage ventile 1 × log population 0.898 0.816 1.013 0.930
(0.0171) (0.0164) (0.00843) (0.0172)

βω2 wage ventile 2 × log population 0.869 0.780 0.958 0.875
(0.0167) (0.0180) (0.0108) (0.0204)

βω3 wage ventile 3 × log population 0.868 0.795 0.951 0.882
(0.0133) (0.0166) (0.0121) (0.0217)

βω4 wage ventile 4 × log population 0.878 0.814 0.955 0.899
(0.0127) (0.0182) (0.0136) (0.0214)

βω5 wage ventile 5 × log population 0.916 0.862 0.962 0.911
(0.0111) (0.0162) (0.0154) (0.0229)

βω6 wage ventile 6 × log population 0.929 0.881 0.968 0.925
(0.0123) (0.0176) (0.0153) (0.0216)

βω7 wage ventile 7 × log population 0.945 0.902 0.982 0.942
(0.0120) (0.0168) (0.0163) (0.0218)

βω8 wage ventile 8 × log population 0.975 0.934 0.997 0.959
(0.0111) (0.0154) (0.0145) (0.0196)

βω9 wage ventile 9 × log population 0.993 0.958 1.006 0.971
(0.0119) (0.0160) (0.0135) (0.0181)

βω10 wage ventile 10 × log population 1.009 0.972 1.014 0.982
(0.0110) (0.0146) (0.0121) (0.0158)

βω11 wage ventile 11 × log population 1.023 0.992 1.014 0.984
(0.0124) (0.0157) (0.0117) (0.0149)

βω12 wage ventile 12 × log population 1.035 1.004 1.020 0.991
(0.0110) (0.0138) (0.0125) (0.0148)

βω13 wage ventile 13 × log population 1.046 1.020 1.021 0.994
(0.0115) (0.0140) (0.0136) (0.0164)

βω14 wage ventile 14 × log population 1.062 1.036 1.035 1.008
(0.0116) (0.0138) (0.0123) (0.0136)

βω15 wage ventile 15 × log population 1.073 1.046 1.020 0.994
(0.0129) (0.0152) (0.0124) (0.0133)

βω16 wage ventile 16 × log population 1.103 1.078 1.040 1.014
(0.0134) (0.0154) (0.0114) (0.0121)

βω17 wage ventile 17 × log population 1.123 1.097 1.057 1.031
(0.0142) (0.0155) (0.0134) (0.0136)

βω18 wage ventile 18 × log population 1.178 1.157 1.076 1.052
(0.0155) (0.0167) (0.0151) (0.0149)

βω19 wage ventile 19 × log population 1.238 1.215 1.115 1.091
(0.0183) (0.0192) (0.0173) (0.0165)

βω20 wage ventile 20 × log population 1.268 1.250 1.163 1.143
(0.0175) (0.0181) (0.0165) (0.0157)

Notes: Standard errors, clustered by MSA, in parentheses. Sample is individuals 25 and
older earning hourly wages greater than $2/hour residing in 270 metropolitan areas. Wages
in columns 3 and 4 are normalized by city as described in the text.
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greater probability when there are larger differences in population size and skill intensity.

There is more at stake when evaluating our model’s prediction comparing the skill distribu-

tions of Chicago (population 9 million) and Des Moines (population 456 thousand) than its

prediction comparing Des Moines and Kalamazoo (population 453 thousand). Nonetheless,

we report success rates with alternative weighting schemes, including no weights at all. Since

there is significant variation in differences in populations and skill intensities, as depicted in

Figure E.1, the unweighted success rates may differ substantially from those weighted by the

relevant criteria.

Tables E.8 through E.11 present the pairwise comparisons for skill groups, occupations,

and industries with a variety of weights for the same set of bins presented in the main text.

The unweighted success rates show patterns similar to those of the weighted success rates in

terms of birthplace and number of bins. The unweighted success rates are generally lower

than the weighted success rates, demonstrating that our model’s predictions are borne out in

the data more frequently when the relevant differences in population size and skill intensity

are larger. Consistent with the results of subsection 5.3, our theory’s predictive successes are

systematic and the empirical departures from our theory appear to be idiosyncratic. These

results are highly statistically significant, confirming the model’s predictive power.

Figure E.1: Differences in populations and skill intensities
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Table E.8: Pairwise comparisons of three skill groups
Pairwise comparisons of three skill groups

Total Unweighted Pop-diff-weighted
Bins comparisons All US-born All US-born

2 3 1.00 1.00 1.00 1.00
(.17) (.17) (.17) (.17)

3 9 1.00 1.00 1.00 1.00
(.00) (.00) (.00) (.00)

5 30 .93 .97 .97 .99
(.01) (.00) (.00) (.00)

10 135 .77 .81 .89 .91
(.00) (.00) (.00) (.00)

30 1305 .70 .74 .82 .86
(.00) (.00) (.00) (.00)

90 12015 .64 .67 .74 .77
(.00) (.00) (.00) (.00)

270 108945 .60 .61 .67 .69
(.00) (.00) (.00) (.00)

Notes: P-values for uniform null hypothesis in parentheses.
Sample is individuals 25 and older in the labor force residing in
270 metropolitan areas.

Table E.9: Pairwise comparisons of nine skill groups
Pairwise comparisons of nine skill groups

Total Unweighted Pop-diff-weighted Pop-diffxedu-share
Bins comparisons All US-born All US-born All US-born

2 36 .61 .86 .61 .86 .75 .90
(.38) (.02) (.38) (.02) (.08) (.01)

3 108 .58 .80 .61 .83 .75 .88
(.33) (.00) (.26) (.00) (.02) (.00)

5 360 .58 .76 .62 .80 .76 .85
(.21) (.00) (.12) (.00) (.00) (.00)

10 1620 .58 .67 .63 .75 .74 .81
(.07) (.00) (.02) (.00) (.00) (.00)

30 15660 .57 .62 .62 .70 .72 .77
(.01) (.00) (.00) (.00) (.00) (.00)

90 144180 .55 .59 .59 .66 .66 .71
(.00) (.00) (.00) (.00) (.00) (.00)

270 1307340 .54 .56 .57 .61 .61 .64
(.00) (.00) (.00) (.00) (.00) (.00)

Notes: P-values for uniform null hypothesis in parentheses. Sample is individuals 25
and older in the labor force residing in 270 metropolitan areas.
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Table E.10: Pairwise comparisons of occupations
Total Unweighted Pop-diff weighted Pop-diff x skill-diff

Bins comparisons success rate weighted success rate weighted success rate
2 231 .70 .70 .75

(.02) (.02) (.03)

3 693 .66 .68 .74
(.00) (.00) (.00)

5 2,310 .64 .67 .71
(.00) (.00) (.00)

10 10,395 .59 .62 .65
(.00) (.00) (.00)

30 100,485 .56 .60 .63
(.00) (.00) (.00)

90 925,155 .55 .59 .62
(.00) (.00) (.00)

276 8,073,382 .54 .55 .57
(.00) (.00) (.00)

Notes: P-values for uniform null hypothesis in parentheses.

Table E.11: Pairwise comparisons of industries
Total Unweighted Pop-diff weighted Pop-diff x skill-diff

Bins comparisons success rate weighted success rate weighted success rate
2 171 .65 .65 .77

(.09) (.09) (.05)

3 513 .64 .64 .74
(.02) (.03) (.01)

5 1,710 .62 .64 .74
(.00) (.00) (.00)

10 7,695 .59 .62 .71
(.00) (.00) (.00)

30 74,385 .57 .60 .66
(.00) (.00) (.00)

90 684,855 .56 .59 .64
(.00) (.00) (.00)

276 6,469,758 .54 .57 .61
(.00) (.00) (.00)

Notes: P-values for uniform null hypothesis in parentheses.
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